TRAFFIC SIGNAL MANUAL
2018 EDITION
SCDOT TRAFFIC SIGNAL MANUAL

TABLE OF CONTENTS

CHAPTER 1 - INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Policy</td>
<td>1-1</td>
</tr>
<tr>
<td>Chapter Summary</td>
<td>1-1</td>
</tr>
<tr>
<td>Traffic Signal Categories, Types, Locations</td>
<td>1-2</td>
</tr>
<tr>
<td>Core Duties for Traffic Signal and Systems (TS&S) Unit (SCDOT Traffic Engineering -HQ)</td>
<td>1-3</td>
</tr>
<tr>
<td>Traffic Signal Studies</td>
<td>1-4</td>
</tr>
<tr>
<td>Signal Needs Study</td>
<td>1-5</td>
</tr>
<tr>
<td>Left Turn Phase Study</td>
<td>1-7</td>
</tr>
<tr>
<td>Flashing Beacons</td>
<td>1-8</td>
</tr>
<tr>
<td>References</td>
<td>1-13</td>
</tr>
<tr>
<td>Traffic Signal Inventory</td>
<td>1-25</td>
</tr>
</tbody>
</table>

CHAPTER 2 - TRAFFIC SIGNAL PROJECT DEVELOPMENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Upgrade Program</td>
<td>2-1</td>
</tr>
<tr>
<td>Signal Ranking</td>
<td>2-1</td>
</tr>
<tr>
<td>Signal Funding</td>
<td>2-2</td>
</tr>
<tr>
<td>Preliminary Scoping</td>
<td>2-2</td>
</tr>
<tr>
<td>STIP</td>
<td>2-3</td>
</tr>
<tr>
<td>Field Scoping</td>
<td>2-4</td>
</tr>
<tr>
<td>Utility Coordination</td>
<td>2-4</td>
</tr>
<tr>
<td>RR Coordination</td>
<td>2-12</td>
</tr>
<tr>
<td>Programming</td>
<td>2-12</td>
</tr>
<tr>
<td>Procurement</td>
<td>2-13</td>
</tr>
<tr>
<td>Public Interest Finding</td>
<td>2-16</td>
</tr>
<tr>
<td>Letting Package</td>
<td>2-17</td>
</tr>
</tbody>
</table>

CHAPTER 3 - TRAFFIC SIGNAL COMMUNICATIONS NETWORK

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Signal Communication Types</td>
<td>3-1</td>
</tr>
<tr>
<td>SCDOT Communication Network</td>
<td>3-1</td>
</tr>
<tr>
<td>SCDOT Business Communications Network</td>
<td>3-1</td>
</tr>
<tr>
<td>Integrated Traffic System (ITS) Communications Network</td>
<td>3-1</td>
</tr>
<tr>
<td>Traffic Signal Communications Network</td>
<td>3-1</td>
</tr>
<tr>
<td>SCDOT Network for SCDOT-maintained signals.</td>
<td>3-1</td>
</tr>
<tr>
<td>Co-Location Network for SCDOT-owned, local government-maintained signals</td>
<td>3-2</td>
</tr>
<tr>
<td>Traffic Signal Communication Network Project</td>
<td>3-3</td>
</tr>
<tr>
<td>Communications Network Implementation</td>
<td>3-3</td>
</tr>
<tr>
<td>Funding</td>
<td>3-3</td>
</tr>
<tr>
<td>SCDOT Security Protocols</td>
<td>3-4</td>
</tr>
<tr>
<td>SCDOT Duties for Traffic Signal Communications Network</td>
<td>3-4</td>
</tr>
<tr>
<td>Co-Location Servers</td>
<td>3-5</td>
</tr>
<tr>
<td>Traffic Signal Communications Between Signals</td>
<td>3-5</td>
</tr>
</tbody>
</table>
Fiber Communications Design/Installation 3-5
Wireless Communication 3-6
Ethernet Switches 3-10
Communications Between the Traffic Signal System and Communications Network (Either SCDOT or Co-location) 3-10
Cell Modems 3-10
Point of Presence (POP) 3-10
Point to Multi-point 3-10
Traffic Signal Operations Tools 3-11
Traffic Monitoring Cameras 3-11
Short Range Radio Device Detector System (Origin Destination Devices) 3-11

CHAPTER 4 - TRAFFIC SIGNAL DESIGN

Signal Design Standards 4-1
Signal Capacity 4-1
Signal Phasing 4-2
Left Turn Phases 4-3
 Protected Only. 4-3
 Protected/Permissive 4-4
 Flashing Yellow Arrow. 4-4
 Leading vs Lagging. 4-5
 Geometric Conflicts. 4-6
 Variable Left-Turn Mode. 4-6
Concurrent Phasing 4-7
Split Phasing 4-8
Phase Overlaps 4-9
Pedestrian Phasing 4-11
Pedestrian Treatment Design 4-11
 Minimum Pedestrian Signal Treatment 4-11
 Channelized Islands 4-13
 Crosswalks 4-14
 Installation of Pedestrian Buttons Only 4-14
 Installation of Pedestrian Heads Only 4-14
 Installation of Pedestrian Heads & Detectors (Buttons) 4-14
 Two Stage Pedestrian Crossing 4-14
 Pedestrian Hybrid Beacon (HAWK Signal) 4-14
 Placement of Pedestrian Signal Heads, Buttons, Signage 4-16
 Countdown Signal Heads 4-16
 Accessible Pedestrian Signals (APS) 4-16
 Restricting Pedestrian Traffic 4-16
Signal Cycle
Signal Plan
Roadway Geometry
Right-of-Way information
Placement of Signal Equipment
 Signal Heads
 Signal Cabinet
 Pedestrian Treatments.
 Detection
 Conduit / Spice Boxes
 Typical Signal Signs
 Signal Support Poles
 Selection of Signal Support Poles
 Steel Poles
 Wood Poles
 Concrete Poles
 Utility (Shared Use) Pole
 Mast Arm Poles.
 Mast Arm Feasibility
 If Mast Arms are the most Feasible Option.
 If Mast Arms are not the most Feasible Option.
 Information needed to Include Mast Arms in Projects
 Methods to Install Mast Arms
 Encroachment Permit Requirements for Mast Arm Installation
 Pictures of Mast Arms with Various Features
 Mast Arm Inspection Form
Signal Plan Drawing
 PE Seal
 North Arrow
 Plan Information Chart
 Map/Grade/Speed Chart
 Title Block
Signal Plan Charts
 Signal Equipment Chart
 Phase /Signal Head Numbering Convention
 Phase Sequencing/Table of Operation Chart
 Signal Timing Chart
 Walk, Ped Clearance
 Minimum Initial, Maximum Initial, Vehicle Extension
Maximum Green, Maximum Green 2 4-41
Added Initial, Maximum Initial 4-41
Minimum Gap, Time Before Reducing, Time To Reduce 4-42
Clearance (Yellow/Red) 4-42

Vehicle Detection 4-46
Vehicle Detection Placement 4-46
Quadrupole Loops 4-46
Semi-Actuated Design 4-46
Numbering 4-46
Setback Detection. 4-46

Vehicle Detection Chart Settings 4-49
Phase/Loop # 4-49
Detector - Amplifier Number, Channel Number 4-49
Wired to Phase (s) 4-49
Lock, Non-Lock, Pulse, Presence 4-49
Operation - Delay, Extension 4-49
Special Features - Time of Day, Switching 4-49
Loop Design - Size, Number of Turns, Distance from Stop Bar 4-49

Vehicle Detection for Advanced Signal Systems 4-49
Video Detection 4-52
Flush Mounted Wireless Detection 4-53
Radar Detection 4-57

Traffic Signal Letting Package 4-58
Design Build Signal Scope 4-58
Other Signal Design Elements 4-87
Battery Back Up System (BBS) 4-87
Emergency Preemption System 4-87
Luminaires 4-87
Wireless Detection Arrays 4-87

CHAPTER 5 - EQUIPMENT

Traffic Signal Equipment Specifications 5-1
Qualified Products List for Signal Equipment 5-1
QPL Items for # 90 Pedestrian Group 5-2
QPL Items for #91 Vehicle Loop Detection Equipment Group 5-5
QPL Items for # 92 Signal Heads, Modules 5-6
QPL Items for # 92 Blank Out Sign Group 5-8
Non-QPL Traffic Signal Heads 5-9
QPL Items for #93 Controller, Cabinet and Components Group 5-10
Non-QPL Traffic Signal Cabinets 5-12
CHAPTER 6 - SIGNAL SYSTEMS

Signal System 6-1
Signal Re-timings 6-1
Signal Systems Operations 6-1
Signal Systems and Roadway Capacity 6-2
Communications 6-2
Signal System Operations Tools 6-2
Signal System Settings (Coordination Plans) 6-2
Cycle Splits 6-4
Phase Sequence 6-4
Offset 6-4
Force Off 6-4
Permissive Period 6-4
Recall 6-4
Red Revert 6-4
Float 6-4
Fixed 6-4
Timing Sheets 6-5
Signal System Regional Planning 6-6
Corridor Evaluation 6-6
Signal System Type 6-7
Time of Day (TOD) 6-7
Responsive 6-7
Adaptive 6-7
Average Cost to Re-time Signals 6-8
Types of Adaptive Systems 6-9
Benefits of Signal Re-timing 6-9
Factors That Can Negatively Affect Signal Re-timing 6-9
Impact of Equipment and Maintenance on Signal Timings 6-10
Synchro Traffic Modeling Software 6-10
SCDOT Synchro Defaults 6-10

CHAPTER 7 - CONSTRUCTION

Roadway Improvement Projects 7-1
 Construction Letting - Design-Bid-Build 7-1
 Request for Proposal Selection/Award- Design-Build 7-1
Resurfacing Projects 7-1
Encroachment Permit Projects 7-1
Signal Improvement Projects 7-2
 Construction Letting - Design-Bid-Build 7-2
 Work Order Assignment 7-2
 In-house Signal Construction 7-2
Construction Letting Award 7-3
 Bid Reviews 7-3
 Award 7-3
 Pre-Construction Conference 7-3
 Qualified Signal Contractors 7-4
Typical Construction Process 7-4
Maintaining Signal Operation During Construction 7-4
 Detection 7-4
 Communications 7-5
Signal Inspection 7-5
 Common Construction Mistakes 7-5
 Contractor Review Rating 7-6
Signal Flashing Operation During Construction Activities 7-6
 Standard 7-6
 Policy 7-6
 Procedure 7-6
 SCDOT Construction Staff Training Requirements 7-6
 Documentation required for all options 7-8
Construction Project Completion/ Closure 7-8
Fixed Price On Call Contract 7-8

CHAPTER 8 - SIGNAL MAINTENANCE

Traffic Signal Maintenance 8-1
Types of Maintenance 8-3
 General Maintenance 8-3
 Extraordinary Maintenance 8-3
 Preventative Maintenance 8-3
Standards Committee 8-3
Standard Operating Procedures 8-4
Communications Maintenance and Implementation 8-4
Fiscal Responsibility for Signal Maintenance 8-4
 School Limit Sign Flashing Beacons 8-4
 Emergency Traffic Signals and Flashing Beacons at Fire Stations 8-5
 Active Railroad Warning Devices 8-5
Signal Maintenance Agreements 8-5
 Work requiring SCDOT review and approval 8-5
 Signal Upgrades/Replacements 8-6
 Detection and Equipment Funding 8-6
 Signal Operations 8-6
 Flashing Operations 8-6
Electric Current Costs 8-7

CHAPTER 9 - RAILROAD PREEMPTION

Background 9-1
Preemption 9-1
Review 9-1
Funding 9-1
Railroad Companies 9-2
References 9-2
Conditions for Interconnection 9-2
Conduct Field Reviews 9-2
 Measure Track Clearance Distance 9-2
 Measure Clear Storage Distance 9-3
 Determine Storage Availability 9-3
 Determine Need for Pre-signals 9-3
 RYG 9-4
 RYY 9-4
 Pre-signal Placement 9-5
Maximum Signal Preemption Time (MSPT) 9-6
 Right of way Transfer Time 9-6
 Pedestrian Clearance 9-6
 Minimum Green 9-6
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow Clearance</td>
<td>9-6</td>
</tr>
<tr>
<td>Red Clearance</td>
<td>9-6</td>
</tr>
<tr>
<td>Queue Clearance Time</td>
<td>9-6</td>
</tr>
<tr>
<td>Track Approach Green Time.</td>
<td>9-6</td>
</tr>
<tr>
<td>Yellow Clearance</td>
<td>9-6</td>
</tr>
<tr>
<td>Red Clearance</td>
<td>9-6</td>
</tr>
<tr>
<td>Total Railroad Warning Time (TRWT)</td>
<td>9-7</td>
</tr>
<tr>
<td>Separation Time</td>
<td>9-7</td>
</tr>
<tr>
<td>Simultaneous vs Advanced Preemption</td>
<td>9-8</td>
</tr>
<tr>
<td>Preemption Hold Interval</td>
<td>9-8</td>
</tr>
<tr>
<td>Exiting Preemption Hold Interval</td>
<td>9-8</td>
</tr>
<tr>
<td>Railroad Preemption Sequence Chart</td>
<td>9-10</td>
</tr>
<tr>
<td>Connection between Railroad Cabana and Traffic Signal Cabinet</td>
<td>9-10</td>
</tr>
<tr>
<td>Vehicle Detection in Advance of Railroad Crossing</td>
<td>9-10</td>
</tr>
<tr>
<td>Battery Back Up System</td>
<td>9-11</td>
</tr>
<tr>
<td>Blank out Signs</td>
<td>9-11</td>
</tr>
<tr>
<td>Signs and Markings pertinent to Railroad Preemptions</td>
<td>9-11</td>
</tr>
</tbody>
</table>

CHAPTER 10 - TRAFFIC SIGNAL SOFTWARE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Traffic Signal Software</td>
<td>10-1</td>
</tr>
<tr>
<td>SCDOT Central Signal Software (ATMS.NOW)</td>
<td>10-1</td>
</tr>
<tr>
<td>Other Central Signal Software</td>
<td>10-1</td>
</tr>
<tr>
<td>Traffic Adaptive Software</td>
<td>10-2</td>
</tr>
<tr>
<td>SCDOT Central Adaptive Signal System Software (Synchro Green)</td>
<td>10-2</td>
</tr>
<tr>
<td>Other Central Adaptive Signal System Software</td>
<td>10-2</td>
</tr>
<tr>
<td>Network Signal Equipment Software</td>
<td>10-3</td>
</tr>
<tr>
<td>Traffic Monitoring Camera software...</td>
<td>10-3</td>
</tr>
<tr>
<td>Wireless Communications Radio software</td>
<td>10-3</td>
</tr>
<tr>
<td>Ethernet Switch software...</td>
<td>10-3</td>
</tr>
<tr>
<td>Origin/Destination / Travel Time Device software.</td>
<td>10-3</td>
</tr>
<tr>
<td>Conflict Monitor software.</td>
<td>10-3</td>
</tr>
<tr>
<td>Video Detection Camera software...</td>
<td>10-3</td>
</tr>
<tr>
<td>Radar Detection software</td>
<td>10-3</td>
</tr>
<tr>
<td>Radar Detection software</td>
<td>10-3</td>
</tr>
<tr>
<td>Wireless Detection System software.</td>
<td>10-3</td>
</tr>
<tr>
<td>Battery Back-up System software.</td>
<td>10-3</td>
</tr>
<tr>
<td>Connected Vehicle Equipment**</td>
<td>10-3</td>
</tr>
</tbody>
</table>
CHAPTER 1 - INTRODUCTION

Figure 1-1 Traffic Signal Categories 1-2
Figure 1-2 Core Duties for Traffic Signal & Systems Unit 1-3
Figure 1-3a Traffic Signal Needs Study Warrants from MUTCD 1-5
Figure 1-3b Example Traffic Count/Signal Warrant Spreadsheet 1-6
Figure 1-3c Example Left Turn Phase Analysis worksheet (page 1) 1-8
Figure 1-3d Example Left Turn Phase Analysis worksheet (page 2) 1-10
Figure 1-4a Example Level 1 Signal Study Scope of Services 1-11
Figure 1-4b Example Level 2 Signal Study Scope of Services 1-12
Figure 1-5a Intersection Control Beacon 1-15
Figure 1-5b Intersection Control Beacon - Multi-lane Roadway 1-16
Figure 1-5c Intersection Control Beacon - All Way Stop 1-17
Figure 1-6 Removal of Intersection Control Beacon 1-18
Figure 1-7 Emergency Signal 1-19
Figure 1-8 School Zone Flasher - Shoulder Mounted Beacons. 1-20
Figure 1-9 School Zone Flasher - Overhead Beacons. 1-21
Figure 1-10 Warning Beacon 1-22
Figure 1-11 Stop Beacon 1-23
Figure 1-12 Road Ends Warning Beacon 1-24
Figure 1-13 Example TEAMS Information 1-26
Figure 1-14 Number of Signals Statewide (by Maintaining Agency) - December 2018 1-27
Figure 1-15 Number of Flashers Statewide (by Maintaining Agency) - December 2018 1-27

CHAPTER 2 - TRAFFIC SIGNAL PROJECT DEVELOPMENT

Figure 2-1a Example Scoping Documentation (page 1) 2-5
Figure 2-1b Example Scoping Documentation (page 2) 2-6
Figure 2-2a Example Field Scoping Checklist 2-7
Figure 2-2b Example Field Scoping Checklist 2-8
Figure 2-2c Example Field Scoping Checklist 2-9
Figure 2-2d Example Field Scoping Checklist 2-10
Figure 2-2e Example Field Scoping Checklist 2-11
Figure 2-3 Programming by Signal Activities 2-12
Figure 2-4 Procurement by Signal Activity 2-15

CHAPTER 3 - TRAFFIC SIGNAL COMMUNICATIONS NETWORK

Figure 3-1 Example Co-Location Network 3-2
Figure 3-2 Co-Location Servers 3-5
Figure 3-3a Communications Comparison of Costs - WBB 3-6
Figure 3-3b Communications Comparison of Costs - Fiber 3-7
Figure 3-3c Communications Comparison of Costs - Cellular 3-8
Figure 3-4 Wireless Broad Band Communication Link btwn SCDOT building & signal @ Meeting Street/Sunset Blvd. 3-9
CHAPTER 4 - TRAFFIC SIGNAL DESIGN

Figure 4-1 Impact to Capacity (2 Phase) 4-1
Figure 4-2 Impact to Capacity (8 Phase) 4-2
Figure 4-3 Critical Movement Analysis (Signal Timing Manual) 4-3
Figure 4-4 FHWA Explanation of Yellow Trap 4-5
Figure 4-5 Example Signal Plan for Lead/Lag Operation 4-6
Figure 4-6 Concurrent Phasing 4-7
Figure 4-7 Split Phasing 4-8
Figure 4-8 Example FYA Overlaps 4-9
Figure 4-9 Example Complex Overlap 4-10
Figure 4-10 Example Timed Overlap 4-10
Figure 4-11 Minimum Pedestrian Treatments 4-12
Figure 4-12 Flow Chart for Curb Ramp Revisions 4-13
Figure 4-13 Push Button Location Area MUTCD 4E-3 4-16
Figure 4-14 Planning Level Cycle Length Assumptions (FHWA Traffic Signal Timing Manual, 1st edition) 4-17
Figure 4-15 Example Cycle Lengths 4-17
Figure 4-16 Example Roadway Geometry 4-18
Figure 4-17 Example R/W Labeling 4-19
Figure 4-18 Signal Head Placement 4-20
Figure 4-19 Example Signal Plan Border and Charts 4-32
Figure 4-20 Various Signal Plan Elements 4-33
Figure 4-21 Signal Equipment Chart 4-34
Figure 4-22 NEMA Phasing Chart 4-34
Figure 4-23 Example of Signal Head and Signal Phase Numbering 4-35
Figure 4-24 Typical Signal Head Displays 4-35
Figure 4-25 Phase Sequence Chart 4-36
Figure 4-26 Table of Operation Chart (TOO) 4-36
Figure 4-27 Signal Timing Chart 4-37
Figure 4-28 MUTCD Pedestrian Clearance 4-39
Figure 4-29 Mainline Detection Placement Chart w/ Signal Settings 4-40
Figure 4-30 SCDOT Stop Bar Detector Placement Chart 4-40
Figure 4-31 Added Initial Settings 4-41
Figure 4-32 Yellow Calculation Chart 4-43
Figure 4-33 Red Calculation Chart 4-43
Figure 4-34 Through Movement Clearance Distances 4-44
Figure 4-35 Left Turn Movement Clearance Distances 4-44
Figure 4-36 Clearance Time Calculation Sheet 4-45
Figure 4-37 Vehical Detection Numbering Configuration 4-47
Figure 4-38 Vehicle Detection Installation Chart 4-48
Figure 4-39 Typical Loop Placement 4-48
Figure 4-40 Typical Loop Placement for Responsive Signal System 4-50
Figure 4-41 Typical Loop Placement for Adaptive Signal System 4-50
Figure 4-42 Video Detection Placement for Adaptive Signal System 4-51
Figure 4-43 Wireless Detection for Adaptive with Existing Inductive Loops 4-51
Figure 4-44 Video Detection vs. Loop Detection 4-52
Figure 4-45 Wireless Sensor Spacing 4-55
Figure 4-46 Comprehensive Stop Bar Control w/ Wireless Detection 4-55
Figure 4-47 Typical Pay Items for Inductive Loops, Video Detection and Wireless Detection 4-56
Figure 4-48a Typical Traffic Signal Pay Items (page 1) 4-60
Figure 4-48b Typical Traffic Signal Pay Items (page 2) 4-61
Figure 4-48c Typical Traffic Signal Pay Items (page 3) 4-62
Figure 4-49 Typical Traffic Signal Costs 4-63
Figure 4-50a Example Signal Plan 4-64
Figure 4-50b Example Signal Plan 4-65
Figure 4-50c Example Hawk Signal Plan (midblock) 4-66
Figure 4-50d Example HAWK Signal Plan (at intersection) 4-67
Figure 4-51a Guidance on Programming Phase 1 FYA 4-68
Figure 4-51b Guidance on Programming Phase 3 FYA 4-69
Figure 4-51c Guidance on Programming Phase 5 FYA 4-70
Figure 4-51d Guidance on Programming Phase 7 FYA 4-71
Figure 4-52 2 Phase NEMA / Sequence/ Table of Operations Chart 4-72
Figure 4-53 3 Phase NEMA / Sequence/ Table of Operations Chart (Protected / Permissive Left Turn Phase w FYA) 4-73
Figure 4-54 3 Phase NEMA / Sequence/ Table of Operations Chart (Protected / Permissive Left Turn Phase w FYA). 4-74
Figure 4-55 8 Phase NEMA / Sequence/ Table of Operations Chart (Protected / Permissive Left Turn Phase w FYA) 4-75
Figure 4-56 8 Phase NEMA / Sequence/ Table of Operations Chart (Protected Only Left Turn Phases) 4-76
Figure 4-57 3 Phase NEMA / Sequence/ Table of Operations Chart (Split Phased Side Street) 4-77
Figure 4-58 8 Phase NEMA / Sequence/ Table of Operations Chart (Lead/Lag Protected Left Turn Phases). 4-78
Figure 4-59 8 Phase NEMA / Sequence/ Table of Operations Chart (Lead/Lag Protected Left Turn Phases) 4-79
Figure 4-60 4 Phase NEMA / Sequence/ Table of Operations Chart (Complex Overlap) 4-80
Figure 4-61 4 Phase NEMA / Sequence/ Table of Operations Chart (Protected/Permissive Left Turn Phase w 5 section head) 4-81
Figure 4-62a Signal Design Level 1 Scope of Services/ Task Descriptions (page 1) 4-82
Figure 4-62b Signal Design Level 1 Scope of Services/ Task Descriptions (page 2) 4-83
Figure 4-63a Signal Design Level 2 Scope of Services/ Task Descriptions (page 1) 4-84
Figure 4-63b Signal Design Level 2 Scope of Services/ Task Descriptions (page 2) 4-85
Figure 4-64 Utility Coordination Scope of Services 4-86
Figure 4-65 Railroad Coordination Scope of Services 4-86
CHAPTER 5 - EQUIPMENT
n/a

CHAPTER 6 - SIGNAL SYSTEMS

Figure 6-1 Force Off/ Permissive Period Calculation 6-4
Figure 6-2 2070 Timing Sheet 6-5
Figure 6-3 Time Space Diagram 6-5
Figure 6-4 Pros and Cons of Time of Day vs Advanced Signal Systems 6-8
Figure 6-5 Frequency / Monitoring Needs for Time of Day and Advanced Signal Systems 6-8
Figure 6-6 Synchro System Screen Shot 6-11
Figure 6-7 Synchro Level of Service Report Screen Shot 6-11
Figure 6-8 Synchro Lanes, Volumes, Timings Report Screen Shot 6-11
Figure 6-9 Synchro Level of Service, Volume to Capacity Ratio, Delay Comparison Report 6-12
Figure 6-10 Signal Re-timing Scope of Services 6-13

CHAPTER 7 - CONSTRUCTION

Figure 7-1 Example Punch List Form 7-7
Figure 7-2a On Call Pricing (page 1) 7-8
Figure 7-2b On Call Pricing (page 2) 7-9
Figure 7-2c On Call Pricing (page 3) 7-10
Figure 7-2d On Call Pricing (page 4) 7-11
Figure 7-2e On Call Pricing (page 5) 7-12

CHAPTER 8 - MAINTENANCE & OPERATIONS

Figure 8-1 SCDOT Signal Shop Contact Information 8-1
Figure 8-2 Local Government Signal Shop Contact Information 8-2

CHAPTER 9 - RAILROAD PREEMPTION

Figure 9-1 TCD, CSD Measurement Guide 9-3
Figure 9-2 Timed Overlap Operation 9-4
Figure 9-3 Calculation for Maximum Signal Preemption Time 9-7
Figure 9-4 Calculation for Separation Time 9-7
Figure 9-5 Example Preemption Sequence Chart - PHI Yellow/Red Flash 9-9
Figure 9-6 Example Preemption Sequence Chart - PHI All Way Red Flash 9-9
Figure 9-7 Example Preemption Sequence Chart - PHI Limited Service 9-9

CHAPTER 10 - TRAFFIC SIGNAL SOFTWARE
n/a
CHAPTER 1

INTRODUCTION
Traffic Signal Policy:
The SCDOT Traffic Signal Manual establishes SCDOT policy concerning traffic signals. This manual details SCDOT's standard methodology for signal review, design, installation, operation and maintenance.

Traffic signals include stop-and-go signals, flashing beacons, and railroad warning devices.

- Traffic signal studies, design, installation, operation, and maintenance shall conform to the Manual on Uniform Traffic Control Devices (MUTCD) and this SCDOT Traffic Signal Manual.
- SCDOT is responsible for the approval, design, equipment, installation, operation, maintenance, and electric current for stop and go traffic signals and flashing beacons on state maintained roadways.
- All stop and go traffic signals and flashers on the SC highway system are owned by SCDOT and operations authority is under SCDOT's jurisdiction. Any installation of traffic signal or flasher on the state's highway system must be approved by SCDOT.
- Signal operations are the responsibility of SCDOT but may be delegated to the local government within an approved Signal Maintenance Agreement. This includes ensuring communications is operational, reviewing signal timings and ensuring coordination plans are in place and operational.

Stop & Go Traffic Signal/Flashing Beacon - approval authority resides in each District.

- Studies must be conducted to determine whether a new or revised traffic signal or a flashing beacon is justified.
- Studies may be performed by SCDOT, consultants or local governments. SCDOT will review studies and the District Engineering Administrator (DEA) determines if traffic signal installations/revisions are warranted based upon the MUTCD requirements and engineering judgment.

Active Railroad Warning Devices

- The Director of Traffic Engineering will make recommendations to the SCDOT Commission for installation or upgrade of active railroad warning devices based upon a statewide ranking system.
- Active railroad warning device installations are typically federally funded, with installations prioritized utilizing a safety ranking system.
- Railroad companies will design and install railroad warning devices. SCDOT will reimburse railroad companies for design, fabrication, and installation costs.
- Active railroad warning devices are operated and maintained by the respective railroad companies, including electrical costs.

Chapter Summary:
The following is a summary of the information provided in each chapter:

Chapter 1 Introduction:
Includes Signal/flasher Installation/Revision Process/Authority, Signal Studies, References, and Inventory.

Chapter 2 Project Development:
Includes Signal Activity Types, Project Development Process, including steps to identify, program, scope, and implement signal projects.

Chapter 3 Traffic Signal Communications Network:
Describes communications efforts for signals.

Chapter 4 Traffic Signal Design:
Design includes the collection of geometric and traffic data, analysis of data, preparation of timing plans, verification of right of way, visual observation of potential utility conflicts, and preparation of signal plans. All signal design must be sealed by a South Carolina registered professional engineer (P.E.)

Chapter 5 Equipment:
Equipment describes the various signal equipment categories.

Chapter 6 Operations:
Includes signal system re-timing and operations.
Chapter 7 Construction:
includes types of signal construction, installation methods and inspections.

Chapter 8 Maintenance:
Includes maintenance duties.

Chapter 9 Railroad Preemption:
includes design and installation information for traffic signals interconnected with active Railroad Devices

Chapter 10 Traffic Signal Central Software:
Includes information concerning the various types of software for traffic signals in South Carolina.

Traffic Signal Categories:
See categories below:
Core Duties for Traffic Signal and Systems (TS&S) Unit (SCDOT Traffic Engineering -HQ)

Traffic Signals and Systems Unit within SCDOT HQ Traffic Engineering performs signal activities as shown above in Figure 1-2. As shown, TS&S has activities with schedules determined by others and must meet those deadlines within time frames dictated by each project. TS&S also manages Traffic Signal Program where scopes, deadlines and work activities are determined by TS&S based on funding and coordination with District personnel. In addition, TS&S provides support services to ensure statewide uniformity in design, equipment and processes for installing, operating and maintaining traffic signals.

<table>
<thead>
<tr>
<th>Preconstruction Projects</th>
<th>Traffic Engineering TS&S Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadway Improvement Projects</td>
<td>Support Services</td>
</tr>
<tr>
<td>for Roadway Widening, Intersection Improvement, Safety Projects, Local Option Sales Tax projects</td>
<td>provides resources to support Signal Activities</td>
</tr>
<tr>
<td>Signal Plan Preparation including development of quantities and any specialized requirements in specifications</td>
<td>Traffic Signal Design Standards</td>
</tr>
<tr>
<td>Traffic Engineering TS&S Activities</td>
<td>Traffic Signal On Call Consultant Services</td>
</tr>
<tr>
<td>Traffic Engineering TS&S Projects</td>
<td>On Call Signal Construction Services Contract</td>
</tr>
<tr>
<td>Type 2 Signal Activities</td>
<td>Signal Construction Specifications</td>
</tr>
<tr>
<td>Type 1 Signal Activities</td>
<td>QPL Program</td>
</tr>
<tr>
<td>Type 3 Signal Activities</td>
<td>Signal Materials Specifications</td>
</tr>
<tr>
<td>Communications Projects</td>
<td>Signal Equipment Contracts</td>
</tr>
<tr>
<td>Type 1 Signal Activities</td>
<td>Research for Advanced Signal Technologies</td>
</tr>
<tr>
<td>Coordination with SCDOT IT Services - Network Group</td>
<td>Training for Signal Design, Project Management, Signal Software, Equipment Operation, Construction/Maintenance Activities</td>
</tr>
</tbody>
</table>

Figure 1-2
Core Duties for Traffic Signal & Systems Unit
Traffic Signal Studies:

- Traffic Signal Studies should be maintained at the District Engineering Office, or at the appropriate local government office.
- *The Manual on Uniform Traffic Control Devices (MUTCD)* 4C has information on Highway Traffic Signals, concerning Traffic Control Signal Needs Studies. More information on Signal Studies is below:

Typical Studies:

- Traffic Signal Needs Study
- Left Turn Phase Study
- Flashing Beacon Needs Study
- Intersection Control Beacon Study
- School Zone Flasher Study
- Intersection Capacity Analysis
- Intersection Safety Study

The following includes typical information that is gathered to make a determination on the appropriate traffic control to address existing conditions.

Field Reviews

- Existing Traffic Control
- Sight distances
- Roadway alignment
- Lane configuration
- Character of area
- Signs and markings
- Adjacent driveway location and spacing
- Operational characteristics of vehicles
- Delay and Queuing Data

Observations

- Motorists Behavior
- Compliance with existing signal, signs and markings
- Traffic patterns

Accident History

- Typically 3 years
- Collision Diagram
- Type and Cause of Collision
- Time of Day/Day of week

Traffic Counts

- Directional Count Data
- Turning Movement Counts
Traffic Signal Needs Study
This study is intended to determine if a traffic signal is warranted at an unsignalized intersection. This study shall be performed in accordance with MUTCD Chapter 4C, see Figure 1-3 below.

Figure 1-3a
Traffic Signal Needs Study Warrants from MUTCD
SCDOT Traffic Signal Manual - Chapter 1

Introduction

South Carolina Department of Transportation

Traffic Engineering

Page 1

South Carolina Department of Transportation Traffic Engineering

Page 1

Page 2

Page 3

Example SCDOT Traffic Count/Warrant Analysis

Figure 1-3b

DECEMBER 1, 2018
Left Turn Phase Study:
Left turn signal phases facilitate left-turning traffic and may improve the safety of the intersection for left turning vehicles. However, this is done at the expense of the amount of green time available for through traffic and will usually reduce the capacity of the intersection. Left turn arrows also result in longer cycle lengths, which in turn have a detrimental effect by increasing stops and delays. While phases for protected left turning vehicles are popular and commonly requested, other methods of handling left turn conflicts also need to be considered. Potential solutions may include prohibiting left turns and geometric improvements. Left turn phasing will typically be installed as a protected/permissive left turn movement if at all possible. This will keep the intersection capacity and efficiency at the highest possible operation level. The following guidelines are listed to determine whether or not a left turn phase should be considered:

A. **Protected/Permissive** - This phasing allows a motorist an opportunity to choose to make their turn during the protected or the permissive part of the signal phase. Left turn phase should only be considered for approaches where one or more of the following requirements are met at the signalized intersections.

1. The cross-product, one hour left turn volume times the opposing one hour through movement volume divided by the number of lanes for the opposing through movement, is greater than or equal to 50,000

 \[V_{lt} \times V_0 \div N_0 \geq 50,000 \]

 Where:
 \[V_{lt} = \text{left-turn flow rate, vehicles/hour} \]
 \[V_0 = \text{opposing through movement flow rate, vehicles/hour} \]
 \[N_0 = \text{number of lanes for the opposing through movement} \]

 *Opposing right turn movement flow rate should be included as necessary

 Example: Main Road @ Side Road

 Main Road EB peak hour (5:00pm to 6:00pm) left turn volume is 113 vph = \(V_{lt} \)
 Main Road WB through peak hour (5:00pm to 6:00pm) volume is 893 vph = \(V_0 \)

 Main Road is a four lane roadway, therefore \(N_0 = 2 \)

 Cross Product = 113 \times 893 \div 2 = 50,454

 (cross-product is greater than 50,000; therefore, the cross product warrant is satisfied.)

2. The left turn volume exceeds 125 vehicles per hour.

 \[V_{lt} = 125 \text{ veh/h} \]
 (Where: \(V_{lt} = \text{left-turn flow rate, vehicles/hour} \))

3. Correctable crashes equals or exceeds 4 crashes in one year or 6 crashes in two years.

4. More than 2 left turn vehicles per cycle still waiting at the end of green.

5. Additional criteria, including but not limited to sight distance, speed of opposing traffic, number of left turn lanes, number of opposing through lanes, delay, the angle of the left turn and if the signal is included in a coordinated signal system should also be taken into consideration when evaluating requests for left turn phases.
B. **Protected only** - This phasing only allows a motorist to turn on the protected phase for the left turn. This option provides more safety; however, a good bit of efficiency is lost at the signal, since during low traffic times, a motorist must wait for the protected turn phase in order to make a turn.

A protected-only left turn phase should be considered when conditions satisfy one or more of the following criteria:

1. \(V_t \cdot V_0 \cdot N_0 \geq 150,000 \)
2. Left turn crashes under a protected/permissive phasing equals or exceeds 5 crashes in 2 years for the proposed movement
3. Dual left turns
4. Limited sight distance will not allow permissive turns
5. Conflicting left turn paths
6. Opposing traffic is approaching in three or more lanes at speeds greater than or equal to 45 mph
7. Additional criteria such as unusual intersection geometrics or a high volume of pedestrians

Engineering judgment should be used in determining if left turn phasing will improve the overall operation of the intersection. Even if the volume warrants are met, a field review should be conducted to determine the number of vehicles waiting to turn left at the end of the phase. Consider the amount of queuing and the storage available to determine if there is adequate room to facilitate the volumes without installing the additional phase. If no safety issues are present, and sight distance and storage is adequate, give strong consideration to the effect of the additional phase on the level of service of the main traffic movements through the intersection. In addition, there are different types of left turn phasing, as shown below:

C. **Variable Turn Modes** - An engineering study should be completed prior to installing a variable left turn mode and/or variable right turn mode at traffic signals.

D. **Flashing Yellow Arrow (FYA)** - SCDOT promotes the use of flashing yellow arrow signal heads for protected permissive signal operation. FYA signal heads are also used at signals with offset left turn lanes regardless of signal phasing. More information and guidelines concerning Flashing Yellow Arrows are provided in Chapter 4.

Flashing Beacons:
Flashing Beacons are maintained by SCDOT and Local Government signal maintainers. Engineers should perform studies to determine if a flashing beacon should be installed in accordance with MUTCD, Chapter 4L, Flashing Beacons and Chapter 4G Traffic Control Signals for Emergency Vehicles, Chapter 7 School Zones Flashers. Engineering judgement shall also be used.

See the following figures for examples of:
Intersection Control Beacon (Figure 1-5a, 1-5b),
Intersection Control Beacon - All way Stop (Figure 1-5c)
Removal of Intersection Control Beacon (Figure 1-6)
Emergency Signal (Figure 1-7),
School Zone Flasher (Figure 1-8, 1-9)
Warning Beacon (Figure 1-10)
Stop Beacon (Figure 1-11)
Road Ends Beacon (Figure 1-12)
Left Turn Analysis

SCDOT - District Traffic Engineering

Intersection: Street A & Street B
Count Date:
Counted By:
Street: A
Left-turn Movement: Westbound
Number Opposing Lanes: 2

Speed Limit or 85th Percentile of Opposing Traffic? 45
Is the current left turn Protected/Permitted? (Y/N) N
Peak Hour Delay/Left Turn Vehicle? #DIV/0!

Count Data

<table>
<thead>
<tr>
<th>Time</th>
<th>Left Turn Volume</th>
<th>Opp Thru Volume</th>
<th>Cycle Length</th>
<th>Max Green</th>
<th>Cross Product</th>
<th>Left Turns Per Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 AM</td>
<td>73</td>
<td>1244</td>
<td>67</td>
<td>40</td>
<td>90812</td>
<td>1.4</td>
</tr>
<tr>
<td>8:00 AM</td>
<td>67</td>
<td>866</td>
<td>67</td>
<td>40</td>
<td>58022</td>
<td>1.2</td>
</tr>
<tr>
<td>11:00 AM</td>
<td>109</td>
<td>722</td>
<td>67</td>
<td>40</td>
<td>78698</td>
<td>2.0</td>
</tr>
<tr>
<td>12:00 PM</td>
<td>132</td>
<td>741</td>
<td>67</td>
<td>40</td>
<td>97812</td>
<td>2.5</td>
</tr>
<tr>
<td>4:00 PM</td>
<td>214</td>
<td>904</td>
<td>67</td>
<td>40</td>
<td>193456</td>
<td>4.0</td>
</tr>
<tr>
<td>5:00 PM</td>
<td>226</td>
<td>951</td>
<td>67</td>
<td>40</td>
<td>214926</td>
<td>4.2</td>
</tr>
<tr>
<td>Average</td>
<td>137</td>
<td>905</td>
<td>67</td>
<td>40</td>
<td>122288</td>
<td>2.5</td>
</tr>
<tr>
<td>Peak Hour</td>
<td>13</td>
<td>18</td>
<td>67</td>
<td>45</td>
<td>234</td>
<td>0.2</td>
</tr>
<tr>
<td>Peak Time</td>
<td>4:15 PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accident History

<table>
<thead>
<tr>
<th>Year</th>
<th>Left Turn Accidents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>1</td>
</tr>
<tr>
<td>2002</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>2</td>
</tr>
</tbody>
</table>

Guidelines for Left Turn Phase Installation

<table>
<thead>
<tr>
<th>Summary of Guideline</th>
<th>Guideline Met?</th>
<th>Hours/Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Left-turn Volume</td>
<td>Yes</td>
<td>3</td>
</tr>
<tr>
<td>Minimum Cross Product of Opposing and Left-turn</td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>Minimum Number of Lefts/Cycle</td>
<td>Yes</td>
<td>4</td>
</tr>
<tr>
<td>Minimum Left-turn Volume vs. Opposing Speed Limit</td>
<td>Yes</td>
<td>6</td>
</tr>
<tr>
<td>Accident History Analysis</td>
<td>No</td>
<td>***</td>
</tr>
<tr>
<td>Minimum Left-turn Delay</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
</tr>
</tbody>
</table>

Minimum Left Turn Volumes

<table>
<thead>
<tr>
<th>Time</th>
<th>Percent Satisfied</th>
<th>Criteria= 120</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00</td>
<td>61%</td>
<td>Average 114%</td>
</tr>
<tr>
<td>8:00</td>
<td>56%</td>
<td>Peak Hour 11%</td>
</tr>
<tr>
<td>11:00</td>
<td>91%</td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>110%</td>
<td></td>
</tr>
<tr>
<td>16:00</td>
<td>178%</td>
<td></td>
</tr>
<tr>
<td>17:00</td>
<td>188%</td>
<td></td>
</tr>
</tbody>
</table>

*Figure 1-3c
Example Left Turn Phase Analysis (page 1)*
Minimum Cross Product of Opposing Through and Left Turns

<table>
<thead>
<tr>
<th>Time</th>
<th>7:00</th>
<th>8:00</th>
<th>11:00</th>
<th>12:00</th>
<th>16:00</th>
<th>17:00</th>
<th>Average</th>
<th>Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>91%</td>
<td>58%</td>
<td>79%</td>
<td>98%</td>
<td>193%</td>
<td>215%</td>
<td></td>
<td>122%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Total Hours Met: 2

Minimum Number of Lefts/Cycle

<table>
<thead>
<tr>
<th>Time</th>
<th>7:00</th>
<th>8:00</th>
<th>11:00</th>
<th>12:00</th>
<th>16:00</th>
<th>17:00</th>
<th>Average</th>
<th>Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>68%</td>
<td>62%</td>
<td>101%</td>
<td>123%</td>
<td>199%</td>
<td>210%</td>
<td></td>
<td>127%</td>
<td>12%</td>
</tr>
</tbody>
</table>

Total Hours Met: 4

Minimum Left Turn Volume vs. Opposing Speed Limit

<table>
<thead>
<tr>
<th>Time</th>
<th>7:00</th>
<th>8:00</th>
<th>11:00</th>
<th>12:00</th>
<th>16:00</th>
<th>17:00</th>
<th>Average</th>
<th>Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>247%</td>
<td>227%</td>
<td>369%</td>
<td>446%</td>
<td>724%</td>
<td>764%</td>
<td></td>
<td>463%</td>
<td>44%</td>
</tr>
</tbody>
</table>

Total Hours Met: 6

Accident History Analysis

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. Met?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Total Years Met: 0

Minimum Left Turn Delay

<table>
<thead>
<tr>
<th>Time</th>
<th>Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:15 PM</td>
<td>#DIV/0!</td>
</tr>
</tbody>
</table>

This report does not constitute a recommendation, other factors and criteria should be considered.

Figure 1-3d

Example Left Turn Phase Analysis (page 2)
Task 1 Signal Studies - Level 1 (per Intersection)

Scope of Work: A study in *Level 1 Signal Study* is required if the District Office is not sure of the types of issues associated with the intersection and needs a quick site visit, sample 15 minute counts and short report summarizing findings of the site evaluation. The results of the study will identify the problems, but may require further detailed evaluation in areas identified.

<table>
<thead>
<tr>
<th>#</th>
<th>Project Tasks</th>
<th>Task Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Management</td>
<td>The CONSULTANT will manage the project to conform to the SCDOT requirements for monitoring and controlling the engineering budget, project schedule and invoicing procedures. The CONSULTANT shall provide project management for all of the tasks detailed below including the submission of monthly invoices and progress reports to the SCDOT. The CONSULTANT will assign a Project Manager to serve as the primary contact for communications with the SCDOT.</td>
</tr>
<tr>
<td>2</td>
<td>Field Review</td>
<td>Field Review: The CONSULTANT shall visit each intersection with representatives of the SCDOT (if necessary) to discuss the project goals and objectives. As part of this field visit, the CONSULTANT will collect site specific information, perform 15 minute traffic counts, take digital photos of the intersections and existing signal equipment, and field check copies of the existing signal plans. The CONSULTANT will prepare a brief memo summarizing the findings of the evaluation including any concerns noted and any recommendations for improvement.</td>
</tr>
<tr>
<td>5</td>
<td>Traffic Signal Study:</td>
<td>As determined in coordination with the SCDOT, the CONSULTANT will utilize MUTCD, &/or Highway Safety Manual, SCDOT Traffic Signal Guidelines to perform studies and to propose recommendations for improvements. The CONSULTANT will utilize Synchro to model peak periods; this will include modeling existing conditions and recommended improvements. The recommended improvements will be modeled based on a projected horizon year and growth rate coordinated with the SCDOT. The capacity analysis results will be provided to the SCDOT as part of the design submittal.</td>
</tr>
<tr>
<td></td>
<td>Capacity Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signal Warrant Study</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Left turn Phase Study</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Safety Study</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Report</td>
<td>The CONSULTANT will prepare a traffic study report detailing all data collected, analysis, performed, and study findings. Report will include concept signal plans, estimated quantities and costs for improvements (if applicable). The study periods and proposed build-out year will be developed in coordination with the SCDOT.</td>
</tr>
</tbody>
</table>

Figure 1-4a

Example Level 1 Signal Study Scope of Work (page 1)
<table>
<thead>
<tr>
<th>#</th>
<th>Project Tasks</th>
<th>Task Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Management</td>
<td>The CONSULTANT will prepare traffic study design plans for each study location. Plans will be schematic in nature and will show recommended improvements including any necessary equipment, signing, signal, marking or roadway construction improvements. Plans will not be sealed and will not include ROW or Utility certification. ASSUMPTIONS: The CONSULTANT will not be responsible for providing survey services under this task. The CONSULTANT will utilize aerial photography to develop base mapping for conceptual designs. The concept study plans will be similar to 30% design plans.</td>
</tr>
<tr>
<td>2</td>
<td>Field Review</td>
<td>The CONSULTANT will calculate preliminary quantities and cost estimates for proposed countermeasures for each study utilizing pay items provided by SCDOT. The CONSULTANT will develop an excel spreadsheet for each study to show quantities required and anticipated costs. Anticipated Costs will be based on the cost estimate file provided by the SCDOT.</td>
</tr>
<tr>
<td>3</td>
<td>Data Collection—Traffic Counts</td>
<td>The CONSULTANT will prepare a traffic study report detailing all data collected, analysis, performed, and study findings. Report will include concept signal plans, estimated quantities and costs for improvements (if applicable). The study periods and proposed build-out year will be developed in coordination with the SCDOT.</td>
</tr>
<tr>
<td>4</td>
<td>Collision Diagram</td>
<td>The CONSULTANT will collect up to three (3) years of collision data from the SCDOT and develop collision diagrams. The CONSULTANT will coordinate with the SCDOT to determine the period of analysis to be performed. The CONSULTANT will summarize its findings in memo format and incorporate safety considerations into the traffic signal design.</td>
</tr>
<tr>
<td>5</td>
<td>Traffic Signal Study: Capacity Analysis Signal Warrant Study Left turn Phase Study</td>
<td>As determined in coordination with the SCDOT, the CONSULTANT will utilize MUTCD, &/or Highway Safety Manual, SCDOT Traffic Signal Guidelines to perform studies and to propose recommendations for improvements. The CONSULTANT will utilize Synchro to model peak periods; this will include modeling existing conditions and recommended improvements. The recommended improvements will be modeled based on a projected horizon year and growth rate coordinated with the SCDOT. The capacity analysis results will be provided to the SCDOT as part of the design submittal.</td>
</tr>
<tr>
<td>6</td>
<td>Schematic Improvement plan preparation</td>
<td>The CONSULTANT will prepare traffic study design plans for each study location. Plans will be schematic in nature and will show recommended improvements including any necessary equipment, signing, signal, marking or roadway construction improvements. Plans will not be sealed and will not include ROW or Utility certification. ASSUMPTIONS: The CONSULTANT will not be responsible for providing survey services under this task. The CONSULTANT will utilize aerial photography to develop base mapping for conceptual designs. The concept study plans will be similar to 30% design plans.</td>
</tr>
<tr>
<td>7</td>
<td>Cost Estimate</td>
<td>The CONSULTANT will calculate preliminary quantities and cost estimates for proposed countermeasures for each study utilizing pay items provided by SCDOT. The CONSULTANT will develop an excel spreadsheet for each study to show quantities required and anticipated costs. Anticipated Costs will be based on the cost estimate file provided by the SCDOT.</td>
</tr>
<tr>
<td>8</td>
<td>Report</td>
<td>The CONSULTANT will prepare a traffic study report detailing all data collected, analysis, performed, and study findings. Report will include concept signal plans, estimated quantities and costs for improvements (if applicable). The study periods and proposed build-out year will be developed in coordination with the SCDOT.</td>
</tr>
</tbody>
</table>
References
Below are links to other pertinent documents for traffic signals:

FHWA Standards
Manual of Uniform Traffic Control Devices (MUTCD)

Signal Definitions
Definitions can be found in
MUTCD Sections 1A.13 and 1A.14

SCDOT Engineering Directives dealing with Traffic Signals
ED 2 Fiscal Responsibilities for Traffic Signals on the State Highway System
ED 19 Manual on Uniform Traffic Control Devices (MUTCD)
ED 33 Mast Arm Policy

SCDOT Traffic Engineering Guidelines dealing with Traffic Signals
TG-1 Street Name Signs on Signal Span Wires or Mast Arms
TG-7 Flashing Yellow Arrow Signal Heads
TG-26 Pedestrian Hybrid Beacon Guideline
TG-33 Rectangular Rapid Flash Beacon
Interim approval from FHWA is required; SCDOT must approve installation under encroachment permit.
TG-35 Business Rules for Signal Shops

Other SCDOT Manuals with Signal Information
SCDOT Maintenance Manual - Chapter 38
Access & Roadside Management Standards - Chapter 8
Roadway Design Manual - Chapter 9

Traffic Signal Equipment:
Qualified Product List (QPL)
Material Specifications for Traffic Signal Equipment

SCDOT Traffic Signal Construction Specifications
Supplemental Specifications SCDOT Traffic Signal Supplemental Technical Specifications
Special Provisions Form

SCDOT Traffic Signal Standard Drawings
675-000-00 - 699-000-00
Procurement Contracts in Place

State Fiscal Accountability Authority - Procurement Services

Signal Equipment Contracts
- Signal Heads *(use search criteria ‘traffic signal’)*
- Pedestrian Heads *(use search criteria ‘traffic signal’)*
- Pedestrian Push Buttons *(use search criteria ‘traffic signal’)*
- Cabinet Assembly *(use search criteria ‘traffic signal’)*
- Solar Flashers *(use search criteria ‘traffic signal’)*
- Blankout Sign *(Under SCEIS Contract Search use search criteria ‘blankout’)*
- Signal Cable *(use search criteria ‘signal cable’)*
- Steel/Concrete Pole *(Under SCEIS Contract Search use search criteria ‘steel pole’)*
- See Chapter 5 Equipment for more information.

Signal Software Contracts
- Central Traffic Signal Software *(use search criteria ‘traffic software’)*
- See Chapter 10 Signal Software for more information.

Signal Construction/Maintenance Services Contract
- Fixed Price On Call Traffic Signal contract *(Under SCEIS Contract Search use search criteria ‘signal’)*
- See Chapter 7 Construction for more information.

Signal Maintenance Partners
- SCDOT Signal Maintainers - see Chapter 8 Maintenance, Figure 8-1
- Local Government Maintainers - see Chapter 8 Maintenance, Figure 8-2

Signal Reports
- Number of Signals Statewide By Maintenance see Chapter 1 Introduction, Figure 1-14
- Number of Flashers Statewide By Maintenance see Chapter 1 Introduction, Figure 1-15

Signal Discussion Users Group
A signal group discussion forum on sharepoint has been developed for SCDOT and local government signal shop employees that maintain, operate, construct, and design traffic signals. This forum gives the signal shop employees the opportunity to stay involved and up to date on any issues pertaining to signal systems. This is a permissions enabled website for signal maintainers.

Encroachment Permit Process

Encroachment Permit Process
Also, see Chapter 7 Construction for language to include in the Special Provisions portion of the Encroachment Permit for traffic signals to be installed under encroachment permit.

Online Signal Information Applications (Permissions enabled applications):
- Integrated Traffic Management System (ITMS)
- Traffic Engineering Asset Management Software (Signal Inventory Software Program)
INTERSECTION CONTROL OVERHEAD BEACON EXAMPLE

Note: 1) Install red overhead flashers on the S-568 approaches,
 2) Install yellow overhead flashers on the S-31 approaches.

Figure 1-5a
Intersection Control Beacon
MULTI-LANE INTERSECTION CONTROL OVERHEAD BEACON EXAMPLE

SIGNAL EQUIPMENT

ONE (1) SOLID STATE FLASHER COMPLETE WITH CABINET
FOUR (4) ONE WAY BEACONS WITH 12” YELLOW LENS
TWO (2) ONE WAY BEACONS WITH 12” RED LENS (USE LED MODULE IN BEACONS)
POLES AS NECESSARY

NOTES:

• BEACONS 2 & 6 TO FLASH ALTERNATELY & CONTINUOUSLY TO ROUTE A
• BEACONS 4 & 8 TO FLASH CONTINUOUSLY TO ROUTE B.
 IF MULTIPLE BEACONS ARE USED FOR ROUTE B, FLASH ALTERNATELY AND CONTINUOUSLY.
• TWO HORIZONTAL RED BEACONS USED FOR THE SAME APPROACH FLASH SIMULTANEOUSLY.

Figure 1-5b
Intersection Control Beacon - Multi-lane Roadway
INTERSECTION CONTROL OVERHEAD BEACON - ALL WAY STOP

Figure 1-5c
Intersection Control Beacon- All way stop
REMOVAL OF INTERSECTION CONTROL BEACONS

Below is an example plan detailing the removal of overhead intersection control beacons.

NOTE:
1. Remove overhead flashers (and install advanced warning signs per typical drawings) at the following intersections:
 - [List of intersections]

2. Prior to beginning work, coordinate with District Traffic Engineer to confirm proper sign placement at each intersection.

3. All advanced warning signs shall be placed for 2 weeks prior to turning off overhead flashers.

4. Once overhead flashers have been turned off for 2 weeks, remain in signal operation is removed from District Signal Drop.

5. Additional flashers may be installed as deemed necessary.

6. All sign posts shall have intersection sign and panel.

ADVANCED WARNING SIGN PLACEMENT FOR REMOVAL OF OVER HEAD FLASHERS

CHART A: ADVANCED SIGN PLACEMENT

<table>
<thead>
<tr>
<th>SPEED</th>
<th>DISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 40</td>
<td>560' - 706'</td>
</tr>
<tr>
<td>> 40</td>
<td>660' - 800'</td>
</tr>
</tbody>
</table>

* Distance may be field adjusted.

Figure 1-6
Removal of Intersection Control Beacon
Figure 1-7
Emergency Signal
Figure 1-8
School Zone Flasher - Shoulder Mounted Beacons
Figure 1-9
School Zone Flasher - Overhead Beacons
The flasher/beacon may be attached to the advanced warning sign depending on sight distance and engineering judgement on a case by case bases as shown below.

WARNING BEACON EXAMPLE

In cases with dual stop signs, dual stop ahead signs, or both; the flasher should be installed over the sign located on the right hand side of the road or both depending on engineering judgment.

NOTE:

In cases with dual stop signs, dual stop ahead signs, or both; the flasher should be installed over the sign located on the right hand side of the road or both depending on engineering judgment.

Figure 1-10
Warning Beacon
Typically the stop flasher/beacon is attached to the stop sign as shown below.
FLASHER FOR ROAD ENDS EXAMPLE

SIGNAL EQUIPMENT
- ONE (1) FLASHER CONTROLLER & CABINET.
- TWO (2) YELLOW BEACONS (12" INCHES)
 - *POLES AS NECESSARY
- BEACONS TO FLASH
 - YELLOW ON "A" (ALTERNATING CONTINUOUSLY)

Figure 1-12
Road Ends Warning Beacon
Traffic Signal Inventory
The Director of Traffic Engineering is responsible for providing a traffic signal management tool to inventory and house pertinent stop & go signal and flashing beacon information. The TEAMS (Traffic Engineering Asset Management Software) program is available for use by both SCDOT signal maintainers and local government signal maintainers as a web-based program.

The districts and local governments participating in the signal maintenance agreement program are responsible for maintaining and updating inventory data in TEAMS for the stop and go traffic signals and flashing beacons.

Railroad Device Inventory – The Railroad Division of Traffic Engineering will maintain a statewide inventory of active railroad warning devices.

TEAMS (Traffic Engineering Asset Management Software)
To comply with the ACT 114 requirement to rank projects needs in order of priority, SCDOT obtained software license for a comprehensive Traffic Signal Management Tool, called TEAMS in the fall of 2010.

- **TEAMS** - The TEAMS software consists of a web based inventory, preventative maintenance, troubleshooting, and work management software application that shares data with Integrated Transportation Management System (ITMS). TEAMS was developed with Microsoft Visual Studio 2013 and utilizes Microsoft’s IIS Server. It is an N-tier web application utilizing Microsoft .NET 4.5.2, Silverlight, and web services in a Microsoft SQL Server 2012 environment.

- **TEAMSLite** - TEAMSLite is an HTML5 web application for mobile devices such as the iPad, Android Tablets, and Windows Surface Tablets. TEAMSLite is a field technician’s version of TEAMS, and, as such, has some, but not all of the capability of the full version.

- **TEAMS Off-Line** - TEAMS Off-Line enables users to perform maintenance, inventory, inspections, etc. while disconnected from the internet. When the user returns to the office or any location with internet connectivity, the system can be brought back on-line allowing modifications to be synchronized with the TEAMS service. This capability is essential for users working in areas where there is limited internet availability. This version of the tool runs on Windows laptops or tablets such as the Windows 8 Pro devices.

Signal Inventory History
On-site reviews and inventories were conducted in 2010-2011 to populate the TEAMS database. Signal Maintainers populated TEAMS with flasher information and signal system information.

- **TEAMS** is an on-line application, accessible from any location via user name and password and an internet connection. TEAMS has an offline version for remote locations, providing the users cache the offline locations in advance. TEAMS also has a tablet version. Signal maintainers utilize air cards and laptops to operate and update TEAMS when changes are made to signals or when Preventative Maintenance activities occur.

- **TEAMS is currently used:**
 - as a storage location for signal plans, re-timing data and other pertinent information,
 - as a tool to recommend funding levels for signal maintenance, capital improvements for signal rebuilds, and for signal operations work,
 - as the mobile application to perform Preventative Maintenance reviews,
 - to identify the location of signal systems and the pertinent communications equipment associated with these systems,
 - to verify billing from power companies,
 - TEAMS data via ITMS can be used to scope signal work required within other projects (widening, resurfacing, safety, enhancements)
 - to create Standard reports and ad-hoc reports
 - as a warehouse for equipment not in use
 - for guest users
Signalized Locations in Columbia Area

Signalized Locations in Columbia Area by Maintaining Organization

Signalized Locations in SC by Maintaining Organization
Figure 1-13
Example TEAMS Information
Figure 1-14
Number of Signals Statewide (by Maintaining Agency)
as of December 2018

Figure 1-15
Number of Signals Statewide (by Maintaining Agency)
as of December 2018
This chapter focuses on the management of the Traffic Signal Program. The TS&S Project Development Process is described below.

Signal Upgrade Program
The first step in developing a Signal Upgrade Program is to develop a statewide signal ranking process. This ranking provides a list of signals that are eligible for upgrade based on condition, traffic volumes and interstate proximity.

Signal Ranking
The statewide signal ranking process was implemented in 2013 based on the following information:
- Age of Equipment
- Proximity of Interstate
- Average Daily Traffic Volume

The Age of Equipment and Proximity of Interstate information was obtained from the Traffic Signal Inventory program, TEAMS. The AADT was obtained from ITMS. Flasher locations were not ranked.

Points were given to each location based on the following criteria:

- **Age of Equipment**
 - Age of Controller (in years) = AGE points
 - Age of Cabinet (in years) = AGE points
- **Proximity of Interstate**
 - If a location is at a ramp = 2 points, otherwise = 0 points
- **Average Daily Traffic Volume**
 - > 12,000 AADT = 2 points, otherwise = 0 points

Based on these factors, a statewide ranking has been developed. It was determined that, because the life cycle of a signal is 15 years, any signal with more than 15 points is a candidate for a rebuild.

For planning purposes, a 15-year life cycle is SCDOT’s target for controller/cabling signal equipment replacement; 7.5 years for signal head replacements, and 30 years for signal support replacements. These are target life cycles for signals; however signal equipment may be older than 15 years and still in good operating shape. These life cycles are established as a planning tool for establishing needed funding. Based on these targets, SCDOT’s signal upgrade program funding would exceed $22M annually.

Using the point system ranking, each District Traffic Engineer determines which signals are to be included in the annual Traffic Signal Upgrade project.

New signals are top priority and may be included in the project, if scheduling of project fits the signal installation schedule. New signals are often installed with state funds by on call contractors, since new signals are generally installed as soon as possible and cannot be subject to the possibility of delayed lettings and awards.

New Signal Systems are eligible for funding based on District justification. Signal systems are projects that include providing communications and special timings to operate signals that are in close proximity, generally on high volume arterials.

For Signal Upgrades (Rebuilds), District staff should include all the signals within their jurisdiction that are owned by SCDOT, including both SCDOT maintained and local government maintained signals. Close coordination with local government signal staff is necessary to ensure signals are appropriately chosen for upgrades.

Districts may chose signals that are not the highest ranking signals based on the following reasons:
- District staff has more specific knowledge of faulty or deteriorated signal equipment, which includes wiring, poles, or other equipment that is not considered in the ranking methodology; in this case there may be justification for including signals with less than 15 points.
- District staff may have a signal that requires more maintenance than normal due to poorly placed signal equipment; in this case there may be justification for including that signal in a project with less than 15 points.
• If an eligible signal is chosen and is part of an existing signal system or adjacent to a signal system, the District may provide justification for including improvements along the entire signal system as needed.

• Districts may include upgrades to flasher locations based on the condition of the equipment.

District staff may bypass high-ranking signals based on the following criteria:

• Railroad, utility or right of way issues are present that would add undue costs to the upgrade and require a lengthier project design.

• There is an upcoming project anticipated that will impact the signal.

• A resurfacing project is planned that will impact the signal detection.

• The signal may be considered for removal based on changes in side street traffic volumes.

In 2013, out of 3,942 signalized locations, there were 2,275 candidates with over 15 points, meeting the criteria for signal upgrades. The top 981 ranking candidate locations had 24 points or more.

Signal Funding

Funding for the Signal Upgrade Program is identified in the Statewide Transportation Improvement Program (STIP) and has been approximately $8M annually. Signal Upgrade Funding is allocated per district by percentage based on the number of signals in the district. This Signal Upgrade Program has been federally funded until 2016, but is currently state funded. Federal and state funds have different requirements for obligation and letting. TS&S Signal Program Managers will coordinate with Preconstruction Management to appropriately plan and schedule signal projects.

Preliminary Scoping

After determining the signals to be included in the project, HQ and District Signal staff should meet to preliminary scope this work. This meeting should determine the type of signal project activities. Signal projects may include a combination of Signal Activity Types. The Signal Activity Types are defined below and described in more detail later in this document.

Type 1 Signal Activities - Traffic Signal System Re-timing/Operational Improvements

Type 1 signal activities include any of the following timing improvements:

• **Time Of Day Re-timing** to include
 o Traffic count
 o Labor for re-timing by consultants/SCDOT

• **Responsive Re-timing** to include
 o Traffic counts
 o Labor for re-timing by consultants/SCDOT
 o Installation of additional detection
 o Performance Measuring devices (origin destination, travel time devices)
 o Operations tools (Traffic monitoring cameras)

• **Adaptive Re-timing** for systems maintained by SCDOT include
 o Adaptive Software services including software, detection design, implementation
 o Installation of additional detection
 o Performance Measuring devices (origin destination, travel time devices)
 o Operations tools (Traffic monitoring cameras)
Type 2 Signal Activities - Traffic Signal Upgrades

Type 2 signal activities include:
- New Installation
- Signal Rebuilds
- Signal Equipment Upgrades, such as adding pedestrian treatments, flashing yellow arrows;

Type 3 Signal Activities - Traffic Signal Communications Network Projects

Type 3 signal activities is typically implemented at signal system signals or isolated signals that require remote monitoring. Type 3 activities include all work necessary to place traffic signals on the communications network and can include the following:
- Design/testing/implementation
- Installation of communications between signals (fiber optic cable, wireless communications, and if necessary support poles, electric service, ITS cabinet, conduit, cable),
- Connecting to the Communication Network (cell modems, direct connect via network fiber), network devices (switches, server, firewalls)
- Performance Measuring devices (origin destination, travel time devices)
- Operations tools (Traffic monitoring cameras)
- This work may also include ensuring the Traffic Signal Network continues to operate properly.

The Signal Activity designation will assist in determining how the project will be implemented. Decisions will be made concerning who will perform Project Management, Engineering, Operations activities, how the Field Implementation will occur and if SCDOT will provide any Equipment or Software. Typical scopes and a discussion of project methodology is discussed in later in this document under “Types of Signal Activities”. A general description is below:
- Type 1 and 3 Signal Projects can be implemented through the use of the On Call Signal Services and On Call ITS Services contracts. Type 1 and Type 3 Signal Projects utilize SCDOT staff and/or consultants to perform Project Management/Engineering/Operation activities, such as re-timing, field scoping, design, issuing work orders, field inspection. No work will occur outside the SCDOT right of way.
- Type 2 Signal Projects funded with federal dollars must be let to construction. Type 2 Signal Projects funded with state dollars may be let to construction or constructed utilizing On Call Signal Construction Services contract. Type 2 Signal Projects utilize SCDOT staff and/or consultants to perform Project Management/Engineering/Operation activities, such as signal design, field scoping, letting package preparation.

STIP

The SCDOT Signal office will prepare and modify a rolling two-year plan of individual signal projects. A list of these projects will be provided to the Planning office that includes anticipated program amounts within each MPO area. The SCDOT Planning office will coordinate with the MPOs for inclusion of these projects in the relevant TIP. Modifications and adjustments to this plan will be routed to the Planning office on a regular interval in order to ensure consistency between the TIPs, STIP and programmed amounts. In addition, Lump Sum reports can be accessed through the eSTIP application to provide greater transparency to individual projects programmed against the lump sum STIP values. The list will be provided to the MPO’s for inclusion in their TIPs.
Field Scoping
Scoping should address potential right of way or utility impacts, as well as signal design issues. Obtain right of way information prior to field scoping. This scoping process will provide improved scheduling and estimates during the final stages of the project development process.

- Utilities marked prior to field scoping; right of way staked prior to field scoping.
- Field scoping to include SCDOT staff and consultant design staff (HQ Traffic Engineering, District Signal Staff and/or District Utility Coordinator)
- A standard scoping form is shown in Figure 2-1a,b. This form should be kept in the project file to ensure concerns discussed during the scoping meeting are addressed prior to construction authorization.
- A field check list is shown in Figure 2-2a-e. The field checklist should ensure a thorough field review.

Utility Coordination:
The scoping will determine if attachment agreements or relocations are needed. Signal plans are not surveyed plans and are schematic in nature. The poles are not based on stationing and offsets. The base signal plan is generated from roadway plans, but utility locations are not identified on signal plans. When signal upgrade projects are developed, the design of said plans is based on utility locates and field visits with the signal maintainers to identify what poles need replacing based on height and type. SCDOT has been in the process of replacing all wood signal poles with steel or concrete signal poles for the past 10 years. Many existing signals attach to shared use poles and SCDOT prefers to attach to its own poles and to get off shared use poles. This is not always possible due to limited right of way. Ideally each signal should have 4 steel poles, one on each quadrant to make a box span for the signal heads. If a utility issue arises during construction that was not identified during scoping, this utility issue can generally be addressed by moving the pole, eliminating the pole replacement and reusing the existing pole, or installing a new pole on an existing foundation.

If there are utility conflicts identified during construction, the signal pole locations can be moved as the span wire does not have to be perpendicular to the roadway, as the signal heads can be adjusted for visibility. In many cases, if utility issues (overhead or underground) make installation of a new pole adjacent to an existing pole, unfeasible, we can simply reuse the existing pole. If a taller pole is needed, we can mount the taller pole on the existing foundation- as our foundation for steel poles is uniform for 28’ or 32’ steel poles. SCDOT prefers installing a new foundation, as that makes it easier to construct, but we do have that option if we can verify the existing foundation meets current specifications.

- During scoping, if any of the existing poles do not meet current electrical safety standards due to spacing and there is no room for a new pole, SCDOT will pursue obtaining a utility agreement to address those issues.
- If the existing signal is attached to a shared use pole and must re-use that pole instead of installing a signal pole, SCDOT will coordinate with that utility company during construction, as it is not a new attachment.
- Any new attachments to shared use poles will be identified during design and attachment agreements must be obtained prior to construction letting to be eligible for federal funding.

Federal funding will pay for utility expenses if they are addressed prior to the letting and any needed utility agreements will be in place prior to the letting.

If no utility conflicts are anticipated and options (relocation, re-using existing support pole, re-using foundation, reduction of work) are available to avoid unforeseen utility issues, the District signal staff will provide this information to HQ along with concurrence from District construction or utility personnel. Either the Director of Traffic Engineering or the State Utility Engineer will sign the utility certification as indicated below:

1. Based on the unique nature of signal projects and the flexibility to avoid utilities during construction, the utility certification can be signed by the Director of Traffic Engineering. However a comment will need to be added to the certification that “any additional costs or delays due to utility conflict during construction will be deemed federal-aid nonparticipating”.
2. The State Utility Engineer can sign the certification, if all of the SCDOT Utility Department requirements are met.
Project Scoping Meeting

Meeting Location:

Attendees:

AGENDA Checklist

General Project Information

- General

Design

- Proposed Design

Construction

- Constructability Issues

Right of Way

- Right of Way Plans, Anticipated Impacts
Environmental

- Anticipated Type of Permit and NEPA Document

Traffic Engineering

- Crash Reports, Traffic Volume Data

Utilities

- Potential Conflicts, Utility Owner and Contacts

Conclusions

Action Items

<table>
<thead>
<tr>
<th>DEADLINE</th>
<th>RESPONSIBLE PARTY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scoping - Signal Design / Field Review

<table>
<thead>
<tr>
<th>NE Quadrant 1</th>
<th>NW Quadrant 2</th>
<th>SE Quadrant 3</th>
<th>SW Quadrant 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right of Way</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business / Landmark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note available r/w per Quadrant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Will additional r/w be needed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note any issues with overhead or under ground utilities, as it relates to signal supports, span wire, mast arms, signal heads, and conduit. List and note on plan, utility company and types of utilities marked and observed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensure District Traffic, Construction, and Utility personnel are involved in reviews/design decisions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are utilities marked during review?</td>
<td>Will attachment agreement be required?</td>
<td>Will utility relocation be required?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NE Quadrant 1</th>
<th>NW Quadrant 2</th>
<th>SE Quadrant 3</th>
<th>SW Quadrant 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Supports</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identify any issues with re-using existing poles, including necessary clearance issues, height, maintenance, ADA issues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If mast arms exist, identify who owns and maintains mast arms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDENTIFY WHAT POLES ARE RE-USED, BY TYPE AND QUADRANT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(IF RE-USING SHARED USE, COORDINATE W/UTILITY DURING CONSTRUCTION)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identify any issues with existing span configuration that need correction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Height</td>
<td>Type</td>
<td>Height</td>
</tr>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>SM</td>
<td>SM</td>
<td>SM</td>
<td>SM</td>
</tr>
<tr>
<td>DM</td>
<td>DM</td>
<td>DM</td>
<td>DM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Span Wire</th>
<th>Type</th>
<th>Existing</th>
<th>Proposed</th>
<th>More info on Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box</td>
<td></td>
<td></td>
<td></td>
<td>Re-use existing span wire?</td>
</tr>
<tr>
<td>Modified Box</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td>Replace existing span wire?</td>
</tr>
<tr>
<td>Identify any issues with existing span configuration that need correction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2-2a

Example Scoping Documentation (page 1)

2-7
Signal Cabinet

<table>
<thead>
<tr>
<th>Type/Location</th>
<th>Existing</th>
<th>Proposed</th>
<th>More info on Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadrant</td>
<td></td>
<td></td>
<td>Re-use Existing cabinet</td>
</tr>
<tr>
<td>332 base mounted</td>
<td>Re-use Existing Cabinet Foundation, Install New Cabinet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>336 base mounted</td>
<td>Install 2070 Controller / conflict monitor in Existing Cabinet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>336 pole mounted</td>
<td>Install new cabinet & foundation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other type/ mounting</td>
<td>Install new cabinet on pole</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electric Service

<table>
<thead>
<tr>
<th>Mounting location</th>
<th>New Service or Modify Existing Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestal Mounting</td>
<td></td>
</tr>
</tbody>
</table>

Grounding

Ensure Traffic Signal Cabinet, Poles, etcetera are properly grounded.

Electric Cable

(The condition of the existing cable should be determined by signal maintenance staff)

<table>
<thead>
<tr>
<th>Type Existing Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition (Good, Replace) Use all new cable Re-use existing cable</td>
</tr>
<tr>
<td>Signal Head Cable (Black)</td>
</tr>
<tr>
<td>Pedestrian Head Cable (Black)</td>
</tr>
<tr>
<td>Detection Cable (Grey)</td>
</tr>
<tr>
<td>Pedestrian Button Cable (Grey)</td>
</tr>
</tbody>
</table>

Splice Box

<table>
<thead>
<tr>
<th>Type Existing Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note location and size of existing on plans</td>
</tr>
<tr>
<td>17x30x26</td>
</tr>
<tr>
<td>13x24x18</td>
</tr>
</tbody>
</table>

Pedestrian Treatments

(The designer must determine if pedestrian paths exist and/or if typical pedestrian traffic should be expected, see Chapter 4)

<table>
<thead>
<tr>
<th>Type</th>
<th>Existing</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are sidewalks present? If so, what quadrants?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is curb and gutter present or shoulder section.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are curb ramps in place? If so, describe condition and if DWS is in place</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do channelized islands exist for right turn movement? Determine if pedestrian treatment should be placed in islands or if stop bar should be relocated to include right turn movement in signal operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do medians impact pedestrian movement? If so, ensure modifications to median are included.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are pedestrian buttons in place? What phases?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are pedestrian heads in place? - What phases?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are crosswalk markings in place?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Should existing crosswalk markings be removed or relocated?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Should pedestrian phase be exclusvie?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What signs are needed to address pedestrian issues?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does two phase pedestrian crossing exist? Should two phase crossing be utilized?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2-2b

Example Scoping Documentation (page 2)
Signal Heads

<table>
<thead>
<tr>
<th>Type</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>other</th>
<th>OLA</th>
<th>OLB</th>
<th>OLC</th>
<th>OLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note phases and number of signal heads</td>
<td></td>
</tr>
<tr>
<td>RYG</td>
<td></td>
</tr>
<tr>
<td>RAYAYA - FYA permissive</td>
<td></td>
</tr>
<tr>
<td>RAYAYAGA-FYA prot/permissive</td>
<td></td>
</tr>
<tr>
<td>5 Section left turn</td>
<td></td>
</tr>
<tr>
<td>RARAYAGA protected left turn</td>
<td></td>
</tr>
<tr>
<td>RAYAGA protected left turn</td>
<td></td>
</tr>
<tr>
<td>5 section right turn</td>
<td></td>
</tr>
<tr>
<td>RYGGAG-thru/left split phase</td>
<td></td>
</tr>
<tr>
<td>RYAGA - split</td>
<td></td>
</tr>
<tr>
<td>backplates</td>
<td></td>
</tr>
<tr>
<td>mast arm signal head mounting?</td>
<td></td>
</tr>
</tbody>
</table>

Proposed

<table>
<thead>
<tr>
<th>Type</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>other</th>
<th>OLA</th>
<th>OLB</th>
<th>OLC</th>
<th>OLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note phases and number of signal heads</td>
<td></td>
</tr>
<tr>
<td>RYG</td>
<td></td>
</tr>
<tr>
<td>RAYAYA - FYA permissive</td>
<td></td>
</tr>
<tr>
<td>RAYAYAGA-FYA prot/permissive</td>
<td></td>
</tr>
<tr>
<td>5 Section left turn prot/permissive</td>
<td></td>
</tr>
<tr>
<td>RARAYAGA protected left turn</td>
<td></td>
</tr>
<tr>
<td>RAYAGA protected left turn</td>
<td></td>
</tr>
<tr>
<td>5 section right turn</td>
<td></td>
</tr>
<tr>
<td>RYGGAG-thru/left split phase</td>
<td></td>
</tr>
<tr>
<td>RYAGA - split</td>
<td></td>
</tr>
<tr>
<td>New backplates with reflective border?</td>
<td></td>
</tr>
<tr>
<td>Mast arm signal head mounting required?</td>
<td></td>
</tr>
<tr>
<td>Replace all signal heads or re-use?</td>
<td></td>
</tr>
<tr>
<td>If reusing heads, rewire or leave existing signal cable in place?</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2-2c

Example Scoping Documentation (page 3)
Vehicle Detection

Inductive Loop Detection
- **Note phases**
- **size** (6x6, 6x10, 6x20, 6x30)
- **location** (setback, stop bar)
- **quadrupole?**

Video Detection Camera
- **Note phases**
- **Mounting location / Number of Cameras**
- **Single or Dual Processor**

Wireless Detection
- **Note phases**
- **detection zone size**
 - (1 sensor=6x6, 2 sensors=6x10 or 6x20, 3 sensors=6x30)
- **location** (setback, stop bar)
- **Mounting location of Receiver**
- **Mounting location of Antenna**
- **Mounting location of repeaters**

Radar Detection
- **Note phases**
- **detection zone size**
 - (1 sensor=6x6, 2 sensors=6x10 or 6x20, 3 sensors=6x30)
- **location** (setback, stop bar)
- **Mounting location of radar(s)**

Remove and Salvage

<table>
<thead>
<tr>
<th>Type</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>List items that will be removed/disposed</td>
<td></td>
</tr>
<tr>
<td>List items that will be removed/delivered to signal shop</td>
<td></td>
</tr>
<tr>
<td>List # pole foundations to be removed 18” below grade</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2-2d

Example Scoping Documentation (page 4)
Vehicle Detection

<table>
<thead>
<tr>
<th>Type</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 other OLA OLB OLC OLD</td>
</tr>
</tbody>
</table>

Inductive Loop Detection
- Note phases
- size (6x6, 6x10, 6x20, 6x30)
- location (setback, stop bar)
- quadrupole?, other
- Reuse existing loops?
- If re-using existing loops, new homerun or reconnect at cabinet?
- For new setback loops, homerun is overhead on messenger or underground in conduit

Video Detection Camera
- Note phases
- Mounting location / Number of Cameras
- Single or Dual Processor

Wireless Detection
- Note phases
- detection zone size
 - (1 sensor=6x6, 2 sensors=6x10 or 6x20, 3 sensors= 6x30)
- location (setback, stop bar)
- Mounting location of Receiver
- Mounting location of Antenna
- Mounting location of repeaters
- Type of System Existing

Radar Detection
- Note phases
- detection zone size
 - (1 sensor=6x6, 2 sensors=6x10 or 6x20, 3 sensors= 6x30)
- location (setback, stop bar)
- Mounting location of radar(s)

Figure 2-2e

Example Field Scoping Checklist (page 5)
Rail Road Coordination:
The scoping will determine if a normal right of entry permit is required or something more complex. Signal contracts include special provisions that address contractor responsibility for obtaining Rail Road permits (see attached), insurance and flagging.

- If the signal work is more complex than obtaining a simple right of entry permit (such as spanning over the Railroad or requiring conduit under the Railroad), SCDOT will perform initial reviews and coordination with the Railroad to determine what type of permit is required and what information is needed for the permit. This information will be included in the contract.
- If the signal work includes adding interconnection between the Railroad warning devices and the traffic signal for preemption, SCDOT will obtain this agreement from the Railroad prior to construction obligation.

Programming
Funding will be programmed by TS&S following a preliminary project scoping meeting. Cost estimates for engineering and implementation will be based on typical unit costs for design and signal upgrades.

- Signal Project Titles will generally include Signal Work Type, Location, Signal Activity Type and the word 'signal'.
- Signal projects will invoke the 100% Safety toggle option on the Details screen in FMIS Projects Module

Phases will be programmed as shown in Figure 2-3.

<table>
<thead>
<tr>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Management/Engineering/Operations</td>
<td>Preliminary Engineering Phase – Improvement</td>
<td>Other Phase – Improvement Type 44 Other</td>
</tr>
<tr>
<td>Field Implementation</td>
<td>Type 15 Preliminary Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Road Construction Phase – Improvement Type</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21 Safety</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering and Inspection Phase –</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improvement Type 17 Construction Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Utility Phase – Improvement Type 43 Utilities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right of Way Phase – Improvement Type 16</td>
<td></td>
</tr>
<tr>
<td>Equipment/Software</td>
<td>Road Construction Phase – Improvement Type</td>
<td></td>
</tr>
<tr>
<td></td>
<td>44 Other</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2-3
Programming by Signal Activities
Procurement
The following details the procurement method for the various signal activities.

Type 1 Signal Activities - Signal System Projects

Project Management/Engineering/Operations

Project management and engineering services are provided by SCDOT staff and/or SCDOT On-Call Traffic Signal Consultant Contract (RFP selection) and SCDOT On-Call Traffic Count Contract. Examples of the necessary engineering include signal re-timing, preparation of signal plans, traffic counts, quantities and cost estimates as well as verification of right of way and utility coordination.

Equipment/Software provided by SCDOT

Type 1 signal activities may require purchase of the following equipment/software by SCDOT upon issuing a Public interest Finding.

- *Network devices* necessary to place the traffic signal on the Traffic Signal Communications network are furnished by SCDOT IT Services. These network devices are on state contract and may include Traffic Monitoring cameras. Wireless Broadband (WBB Radios) Radios, Network Equipment (Ethernet switches, routers, security), Cellular Communications, Leased Line Circuits. Network Equipment and cellular communications will be configured by IT Services.

- *Adaptive signal software and licenses* - SCDOT will furnish and install adaptive signal software and license via SCDOT’s software and equipment state procurement contract.

Field Installation

Type 1 signal activities may require installation of equipment. The SCDOT staff or SCDOT On-Call Contractor Signal Services (Fixed Price On Call Traffic Signal Services) will be used to install equipment.

Examples of this work include:

- *Added detection* for operations of adaptive or responsive signal systems. This detection may include installation of inductive loops, wireless detection, video detection or radar detection.
 - Inductive loops require saw-cutting and installation of loop wire, electrical cable, conduit, splice boxes, messenger wire. Contractors will furnish and install all necessary wire and materials necessary for inductive loops.
 - Wireless detection requires installation of flush mounted sensors within the roadway as well as equipment in the signal cabinet and overhead receivers. Cables must be installed from the receivers to the cabinet. Contractors will furnish and install wireless detection systems.
 - Video detection requires installation of equipment in the cabinet as well as cameras on signal poles. Cables must be installed from the cameras to the cabinet. Contractors will furnish and install video detection cameras.
 - Radar detection requires installation of equipment in the cabinet as well as radars on signal poles. Cables must be installed from the radar to the cabinet. Contractors will furnish and install radar detection.

- *Performance measuring devices* (Short Range Radio Device Detector) - These devices measure travel times in an ongoing bases based on blue tooth technology. The devices require equipment in the cabinet and the radio detectors installed on signal poles, with cable connecting the devices and the signal cabinet. Contractors will furnish and install the performance and measuring devices.

- *Traffic monitoring cameras* may be needed for optimum signal operations, providing traffic engineers remote visual access to identify issues and make needed operational changes. Traffic monitoring cameras require installation of equipment in the cabinet as well as TM cameras on signal poles. Cables must be installed from the cameras to the cabinet. Contractors will install traffic monitoring cameras provided by SCDOT.
Type 2 Signal Activities - Upgrades or New Installations of Traffic Signals

Construction Improvements (as identified by FHWA)

Type 2 signal activities includes design and construction improvements including installation of new cabinet assemblies, controllers, signal heads, detection, signal support poles, all necessary electric cable and conduit.

Project Management/Engineering /Operations

Project management and engineering services are provided by SCDOT staff and/or by SCDOT On-Call Traffic Signal Consultant Contract (RFP selection). Examples of the necessary engineering include; signal design, preparation of letting package, right of way identification and utility coordination.

If Type 1 and/or Type 3 signal activities are included in the scope of the signal project along with Type 2 signal activities, SCDOT may utilize SCDOT On-Call Traffic Signal Consultant Contract to provide signal retiming and communications design services. SCDOT On-Call IT Services Contract (B-line, State procurement) may provide the following services; communications design, configuration, testing, implementation, troubleshooting.

Equipment provided by SCDOT

If Type 1 and/or Type 3 Signal Activities are included in the scope of the Type 2 Signal project, SCDOT will provide the following equipment/software upon issuing a Public Interest Finding. These activities are programed as Road Construction Phase - Improvement Activity 44 Other.

- **Network** devices necessary to place the traffic signal on the Traffic Signal Communications network are furnished by SCDOT IT Services. These network devices are on state contract and may include Traffic Monitoring cameras. Wireless Broadband (WBB Radios) Radios, Network Equipment (Ethernet switch, routers, security), Cellular Communications, Leased Line Circuits. Network Equipment and cellular communications will be configured by IT Services.

- **Adaptive signal software and licenses** - SCDOT will furnish and install adaptive signal software and license via SCDOT's software and equipment state procurement contract.

Type 3 Signal Activities - Traffic Signal Communications Network Projects

Project Management/Engineering/Operations

Project Management and Engineering activities are provided by SCDOT staff, SCDOT On-Call Traffic Signal Consultant Contract and/or SCDOT On-Call IT Services Contract (B-line, State procurement). Engineering activities includes communications design.

SCDOT On-Call IT Services Contract (B-line, State procurement) may be utilized to provide the following services; communications design, configuration, testing, implementation, troubleshooting. Utility coordination activities and right of way identification are also necessary activities for project implementation. Coordination with District and local government signal maintainers and signal engineers is required to determine full scope of project.

Equipment provided by SCDOT

Type 3 signal activities may require purchase of the following equipment/software by SCDOT upon issuing a Public Interest Finding.

- **Network devices** necessary to place the traffic signal on the Traffic Signal Communications network are furnished by SCDOT IT Services. These network devices are on state contract and may include Traffic Monitoring cameras, Wireless Broadband (WBB Radios) Radios, Network Equipment (Ethernet switches, routers, security), Cellular Communications, Leased Line Circuits. Network Equipment and cellular communications will be configured by IT Services.

Field Installation

Type 3 signal activities may require installation of equipment. The SCDOT On-Call Contractor Signal Services (FIXED PRICE ON CALL TRAFFIC SIGNAL) can be used to install equipment.

- **Fiber optic cable and connections** provide communications between signals and to the Traffic Signal Communications Network. Fiber may be installed overhead on messenger wire or underground in
Fiber installation requires splicing to the signal cabinets. Furnish and install pay items may include messenger wire, fiber cable, fiber interconnect center, factory terminated patch panel, conduit, splice boxes, possibly wood or steel poles. **Contractors will furnish and install all materials and equipment.**

- **Traffic monitoring cameras** may be needed for optimum signal operations, providing traffic engineers remote visual access to identify issues and make needed operational changes. Traffic monitoring cameras require installation of equipment in the cabinet as well as TM cameras on signal poles. Cables must be installed from the cameras to the cabinet. **Contractors will install traffic monitoring cameras provided by SCDOT.**

- **Wireless Broadband (WBB Ethernet) Radios** provide point to point communications as an alternative to fiber communications. Radios require installation of equipment in the cabinet as well as radios on signal poles. Cables must be installed from the radios to the cabinet.

When these radios are installed between signals additional equipment is needed, such as cabinet enclosure, electric service/meter and possibly a signal pole. **Contractors will furnish and install all materials and equipment except the radios.** **Contractors will install radios provided by SCDOT.**

Figure 2-4 summarizes procurement methods described above within a chart format.

Types of Signal Project Activities

<table>
<thead>
<tr>
<th>Type</th>
<th>Traffic Signal Communications Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>Traffic Signals Upgraded/New Signals</td>
</tr>
<tr>
<td>Type 2</td>
<td>Temporary Single Phase (TSP)</td>
</tr>
<tr>
<td>Type 3</td>
<td>Permanent Single Phase (PSP)</td>
</tr>
</tbody>
</table>

Project Management/Engineering/Operations

<table>
<thead>
<tr>
<th>Activity Description, Funding Info</th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Improvements/Upgrade</td>
<td>Engineering services provided by SCDOT labor provided, consultants, via on call consultant's order contract or call center contract.</td>
<td>Engineering services provided by SCDOT labor provided, consultants, via on call consultant's order contract or call center contract.</td>
<td>Engineering services provided by SCDOT labor provided, consultants, via on call consultant's order contract or call center contract.</td>
</tr>
<tr>
<td>All signal improvements are implemented by line contractor via letting All signal equipment is furnished and installed by contractor SCDOT provides integration services to test and program the cabinet, controller, and field monitor.</td>
<td>All signal improvements are implemented by line contractor via letting All signal equipment is furnished and installed by contractor SCDOT provides integration services to test and program the cabinet, controller, and field monitor.</td>
<td>All signal improvements are implemented by line contractor via letting All signal equipment is furnished and installed by contractor SCDOT provides integration services to test and program the cabinet, controller, and field monitor.</td>
<td></td>
</tr>
</tbody>
</table>

Equipment provided by SCDOT

<table>
<thead>
<tr>
<th>Activity Description, Funding Info</th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive local software is procured by SCDOT and implemented by vendor.</td>
<td>Adaptive local software is procured by SCDOT and implemented by vendor.</td>
<td>Adaptive local software is procured by SCDOT and implemented by vendor.</td>
<td>Adaptive local software is procured by SCDOT and implemented by vendor.</td>
</tr>
<tr>
<td>If Type 3 Signal Activities are included, SCDOT may provide network devices for installation by contractor including Traffic Monitoring cameras, Wireless Broadband (WBB) Radios, Network Equipment (Ethernet switch, routers, switches), cellular communications, leased line circuits.</td>
<td>If Type 3 Signal Activities are included, SCDOT may provide network devices for installation by contractor including Traffic Monitoring cameras, Wireless Broadband (WBB) Radios, Network Equipment (Ethernet switch, routers, switches), cellular communications, leased line circuits.</td>
<td>If Type 3 Signal Activities are included, SCDOT may provide network devices for installation by contractor including Traffic Monitoring cameras, Wireless Broadband (WBB) Radios, Network Equipment (Ethernet switch, routers, switches), cellular communications, leased line circuits.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2-4

Procurement by Signal Activity
Public Interest Findings
SCDOT provides a Public Interest Finding for equipment and software provided by SCDOT within Type 1 and Type 3 Signal Activities.

SCDOT submits the following justification for the exclusive purchase and installation of state supplied Network equipment for Type 1 and Type 3 Signal Activities including; Traffic Monitoring cameras, Wireless Broadband (WBB Radios) Radios, Ethernet switches and cell modems. Ethernet switches and cell modems will be configured by IT Services.

As of January 2017, SCDOT owns 4093 traffic signals statewide. SCDOT maintains 2768 signals and local governments maintain 1325 signals under a Signal Maintenance Agreement with SCDOT. About half of these signals are in some type of signal system, meaning communications to the traffic signal is required for optimal operation.

Type 1 Signal Activities include installation of advanced technologies for traffic management. These advanced technologies require reliable communications to traffic signals. In 2010, SCDOT began the implementation of a highly secure end-to-end network architecture to optimize communication links and mobility services for traffic signal systems maintained by SCDOT. This infrastructure provides SCDOT with the necessary digital pathways to support new and emerging advanced technologies including traffic adaptive signal systems, traffic monitoring cameras, travel time detection devices, and Vehicle to Infrastructure (V2I) communications.

In an effort to provide consistent network security for traffic signal systems statewide, regional traffic operations/management and infrastructure that ensures advanced technologies can be utilized to improve traffic, SCDOT is creating a shared network infrastructure for local government partners that maintain our traffic signals (Traffic Signal Co-Location Network). This Co-Location network will provide SCDOT with a truly statewide communications network that will allow end-to-end visibility for traffic signal system within the state of SC. Other benefits to the Co-Location Network include uniform signal software updates and information storage, greater traffic operations support for local governments, and greater accessibility for SCDOT via traffic monitoring cameras on locally maintained signal systems.

SCDOT Network Services working with ATT and Cisco Systems have designed a network topology that will allow for secure multi-jurisdictional access statewide. The network provided a multipath backbone with true business continuity for the traffic engineering signals infrastructure.

It will support existing and emerging technologies such as 4G and 5G cellular, 10G backbone infrastructure and advanced firewall/security protection using next generation firewalls. This infrastructure will allow SCDOT TE to continue to expand and allow South Carolina to keep pace with the ever evolving transportation technologies of V2I, Smart City, and autonomous vehicles.

1. SCDOT is currently operating a Traffic Signal Communications Network, designed, implemented and operated by IT Services at SCDOT. This network has been designed for statewide operations.

2. SCDOT procures the following Network equipment in accordance with Statewide Procurement Contracts (see following chart):
 a. Traffic Monitoring Cameras
 b. Wireless Broadband (WBB) Radios
 c. Network Equipment (Ethernet switches, routers, security)
 d. Cellular Communications, Leased Line Circuits

3. Since these Network devices are IP addressable and being connected to the SCDOT network, SCDOT Network Services are responsible for ensuring equipment and software meets SCDOT security protocols. SCDOT maintained signals reside on SCDOT network and use of these devices has been tested and approved by SCDOT Network Services to reside on the network. Due to the ability to operate traffic signal equipment remotely, security is at the forefront of concern.

4. Each of these devices has software that currently resides on the network. SCDOT IT Services has been trained to operate and configure these devices. SCDOT has access to replacement parts and equipment repairs, therefore there is less of a learning curve for SCDOT staff to operate and install these devices.
5. SCDOT will receive savings by not having to purchase multiple replacement parts for each network device.

6. Procurement of these Network Devices includes vendor support and warranty, which makes it more beneficial for SCDOT to purchase directly from the vendor.

7. Contractors are not currently qualified to configure and integrate any Network devices. Contractors can install video detection cameras and Wireless Broadband Radios that have been configured by IT Services. Ethernet Switches and Cell modems must be installed by SCDOT staff.

With this agreement, it is SCDOT’s intent to continue to procure this equipment for the foreseeable future as validated by SCDOT IT Services and SCDOT Traffic Engineering staff. Pursuant to agreement execution, SCDOT will continue to procure these products off of state procurement contracts in future projects.

Letting Package
If the Signal Project is to be let to construction, the following information should be packaged and provided to the Letting Preparation office in accordance with SCDOT scheduling (See Chapter 4 for additional information):

• Signal Plan Set including Cover Sheet, Quantity Sheet and Signal Plans
 • Plans should be sealed consistently, meaning they all have electronic seals or they all are signed by hand; if they are signed by hand, the Letting Preparation Office requires the original sealed plans.

• Pay item quantities and cost estimates

 • The SCDOT Traffic Signal Supplemental Technical Specifications have been approved by FHWA and are automatically included in all construction projects where traffic signals are included.
CHAPTER 3

TRAFFIC SIGNAL COMMUNICATIONS NETWORK

SCDOT
Traffic Signal Communication Types
Traffic Signal Communications activities are classified as Type 3 Signal Activities.

Traffic Signal Communications has changed over the past 10 years to include the following types:

- **Time based coordinated** – no communications between signals. The signals are not physically connected, but instead use the internal clock to time the coordination. Although this is the least costly method, drifting can occur, resulting in the signals being out of sync, and requiring a visit to each signal to make timing adjustments. Signals served from different power sources have a greater tendency to drift.

 Any signal not connected to adjacent signal can get out of sync resulting in reduced progression. In addition, without being on SCDOT network, the signal clocks can drift resulting in going into and out of coordination late or early.

- **Interconnected no communication** – signals have communications between signals but are not connected to SCDOT network. Signals are connected using hard wire, in the form of a copper interconnect, serial radio or fiber optic cable. Typically the most critical signal within the system is established as the master controller, from which changes to the other signals can be made.

 These types of systems are not easily managed, reviewed and operated. Changes must be made in the field and without communications, no remote viewing can occur.

- **Interconnected with communications** – signals have communications between each other and to the network; there are 3 types of communications to these signals:
 - Dial up - can be implemented on copper or fiber communications - slow, obsolete and being replaced
 - Serial – can be implemented on copper, serial radio or fiber communications - generally interconnected directly into signal server;
 - Ethernet - signals are on a Communications Network provided by SCDOT and IP addressed. Constant communications with signal equipment is available.

Since 2010, SCDOT has been converting all signal system communications to Ethernet and connecting these signal systems to the SCDOT Communications Network.

SCDOT Communications Network
The SCDOT Communications Network is ultimately the responsibility of SCDOT IT Services, (Network Services) Some of the tasks involved in operating the SCDOT network include design, installation, security, operations, updates, and maintenance. The SCDOT network is interdependent on fiber installed, operated and maintained by signal maintainers and ITS maintainers; these users rely on the Backbone Network operated and maintained by IT Network Services.

The HQ Backbone network supports the following 3 networks:

- **SCDOT Business Communications Network** – Network Services (IT Services) installs, operates and maintains communications network serving all SCDOT offices statewide. Part of this network pathway follows the ITS Communications Network and then along the interstate as well as ...

- **Integrated Traffic System (ITS) Communications Network** – ITS (Traffic Engineering) installs, operates and maintains fiber along the interstates as well as the hubs that provide pathways to the business network and to the signal communications network. Federal funding is obtained through a statewide program, and Metropolitan Planning Organization programs as well as individual projects for specific interstate upgrades.

Traffic Signal Communications Network
There are two networks for Traffic Signals:

- **SCDOT Network for SCDOT-maintained signals**
 SCDOT maintained signals within systems are connected to the SCDOT Network by direct fiber, wireless or cellular communications. Selected isolated signals are connected to the SCDOT Signal Network by limited data cellular communications.
- **Co-location Network for SCDOT-owned signals maintained by local governments via Signal Maintenance Agreements**

 Local government maintained signals within systems are connected to the Co-Location Network by direct fiber, wireless or cellular communications. Selected isolated signals are connected to the Co-Location Signal Network by limited data cellular communications. The Co-Location Network was developed by SCDOT working with ATT and Cisco Systems to design a network topology that will allow for secure multi-jurisdictional access statewide. The network provides a multi-path backbone with true business continuity for the traffic engineering signals infrastructure.

 The benefits of the Traffic Signal Communications Network are:
 - Replaces obsolete dial-up technology
 - Enables instant, online access to signal systems from any location that has internet access
 - Allows installation of real-time video for monitoring operations
 - Facilitates performance-measuring technology
 - Can reduce unnecessary trips to remote locations
 - Allows adaptive signal technology to be implemented
 - Facilitates the Traffic Signal Software upgrade to virtual servers (better backup and security than physical servers in 7 districts)
 - It will support existing and emerging technologies such as 4G and 5G cellular, 10G backbone infrastructure, advanced firewall/security protection using next generation firewalls.
 - This infrastructure will allow SCDOT Traffic Engineering to continue to expand and allow South Carolina to keep pace with the ever-evolving transportation technologies of V2I, Smart City, and autonomous vehicles.

 In addition to the above, the benefits of the Traffic Signal Co-Location Communications Network are:
 - Provides SCDOT access to locally maintained signal systems,
 - Provides opportunity for regional traffic operations and management
 - Provides consistent network security protocols statewide
 - Provides a statewide communications network that provides end-to-end visibility for traffic signal systems
 - Provides uniform signal software updates for signal software
 - Provides secure and standard signal data and information storage
 - Provides SCDOT a better opportunity for increased traffic operations support to local governments
 - Provides SCDOT better accessibility to traffic monitoring cameras on locally maintained signal systems.
 - Provides local government with access to a signal network maintained, operated and installed with SCDOT funding. Local government IT staff are not required to maintain the signal network.

Prior to implementing the Co-Location Network, a Memorandum of Understanding (MOU) must be executed by both SCDOT and the Local Government, detailing the project, funding and responsibilities. Included in this MOU is a security protocol agreement and a fiber sharing agreement.

![Example Co-Location Network](image_url)
Traffic Signal Communications Network Project:
- Planning/Design tasks needed to effectively expand network
- Identify state of existing fiber through Optical Time Domain Reflectometer testing
- Design network to accommodate needed tools such as real time signal operations & management, Pan Tilt Zoom monitoring cameras, adaptive, and Origin-Destination devices
- Identify network needs for accommodating the traffic signal communications network

Expansion tasks projected:
- Installation of fiber or wireless communications
- Installation of Ethernet equipment such as switches, and cell modems by IT Services staff
- Installation of Co-Location Networks

Operations tasks projected to sustain peak system performance:
- Provide ongoing training for signal systems operations
- Add operations tools to network, including PTZ monitoring cameras, adaptive, and Origin/Destination devices
- Upgrade existing communications equipment to meet industry standards
- Reconfigure existing devices to meet changing security protocols
- Identify and troubleshoot communication interruptions to assure peak performance
- Maintain communications (fiber/ fiber splices, wireless communications) in operating order
- Obtain needed equipment to expand and perform on-going communications operation
- Funds recurring costs for Co-Location Network and Traffic Signal Network

Communications Network Implementation
When using Federal funds, FHWA has approved using competitively-bid-on-call procurement services contracts to expand the Traffic Signal Communications Network by installing fiber or wireless communications to add signals to this network. See Chapter 2 for information in developing and implementing Communications projects (Type 3 Signal Activities).

Funding
The following funding sources have been used for the Traffic Signal Communications Network:
- MPO/COG funding - Federal funds
- SCDOT Program Funds - Federal or State funds
- SCDOT Roadway projects including safety projects, roadway projects- Federal or State funds
- Local Option Sales Tax (LOST)- local funds
- County Transportation Committee (CTC) funds - state funds
- Encroachment Permit - private funds

Funding Eligibility
The capital and operating costs for traffic and traveler information monitoring, management, and control facilities and programs are eligible under National Highway Performance Program (NHPP) and Surface Transportation Program (STP). Federal Highway Administration Operations guidance provides examples of eligible operating costs and expenses.

- In order to assure continuous operation, costs associated with maintaining these systems are necessary operating expenses for traffic monitoring, management, and control facilities and programs provide their intended functions. Examples of these maintenance costs include system maintenance activities to assure peak performance (preventive computer maintenance) and replacement of defective or damaged computer components and other traffic management system hardware (including street-side hardware).
- With a greater shift toward applying technology to addressing transportation needs, a broader life-cycle view of transportation operations is warranted that includes all activities related to sustaining system performance.

Based on this guidance, the following items are eligible for federal funds:
- Expanding and upgrading the traffic signal communication network
- Operations of the network to sustain system performance
- Trouble-shooting and repairing communications issues to assure peak performance
SCDOT Security Protocols
Network Security is important to preserve the integrity of SCDOT’s network. SCDOT’s security protocols are established by SCDOT IT Services. SCDOT’s security protocol is applicable to any devices attached to SCDOT network or Co-Location network.

SCDOT Duties for Traffic Signal Communications Network

Legal
- Prepares Co-Location and Fiber sharing agreements

Network Services
- Provides project approval from State IT Planning
- Provides network design architecture in accordance to industry standards
- Provides network IP addressing for networkable components. (Note: Network Services is the sole administrator of all IP addresses residing on the SCDOT network)
- Provides testing and verifies configuration requirement standards
- Provides detailed work plans along with updated field ‘as built’ drawings for each system implemented. Provide file location and access to district personnel assigned to maintenance of systems
- Provides OTDR Test for SCDOT owned fiber prior to installation and provides test result documentation to district
- Provides training to districts/statewide staff during initial system installations
- Provides system monitoring access for assigned district/statewide support staff
- Provides tel-alert to technical staff where available, i.e. email, cell phone, text, etc.
- Provides Service Documents for phone support direct to the Network Operation Center during normal work hours or emergency third level support after hours
- Provides equipment for Ethernet connections, including current and future specifications, software updates, and spares
- Provides IT vendor maintenance and maintains vendor maintenance contracts
- Provides SCDOT IT purchase approvals through approved equipment contracts
- Orders and maintains circuits needed for remote system location
- Provides private secure cellular service where designed
- Provides network security along with rules and regulations
- Will set up and maintain a virtual central signal software system

Information Security
- Provides network security protocols
- Assists in reviewing network equipment to meet security protocols
- Develops agreement language for Co-Location Networks to address security responsibilities

Traffic Management - Intelligent Transportation Systems (ITS)
- Provide dark fiber at interchanges to a point of presence (POP)
- Ensures fiber connections are maintained and operational from fiber on interstate to POP
- Provides fiber sharing opportunities for local government Co-Location networks
- Hosts traffic monitoring cameras at signals on Pal Guide for emergency responder access only

Traffic Signals & Systems (TS&S)
- Manages Traffic Signal Communications Network projects, including annual operations and maintenance projects, expansion projects and Co-Location projects
- Coordinates with District and Local Government Signal staff for project implementation
- Develops statewide plan for Traffic Signal Communications Network and how it can be utilized to manage and operate signals, including how to utilize new technologies
- Provides troubleshooting for signal software
- Provides first line of assistance to district personnel for problem solving

District Traffic Engineers/Signal Superintendents/Local Government Signal Maintainers with Co-Location
- Operates signal systems communications including replacing switches as needed with annual Traffic Signal Communications Network funding managed by TS&S
- Monitors systems monthly ensuring communications is active
- Ensures communications (fiber and/or wireless) is maintained with annual Traffic Signal Communications Network funding managed by TS&S
Co-Location Servers
There are a variety of software applications housed on the Co-Location Network, for ease of accessibility among SCDOT and local government signal staff. The following is a list of categories of these softwares:
- Central Traffic Signal Software
- Adaptive Software
- Traffic Monitoring Camera Software
- Origin Destination Software
Other softwares may be added as advanced technologies are added, such as Connected Vehicle Technologies.

Traffic Signal Communications Between Traffic Signals

Fiber
Fiber communication is used to physically connect adjacent traffic signals and can also be used to directly connect signals with the SCDOT network. Fiber can be installed overhead or underground in conduit. Overhead fiber installations utilize messenger wire strung between utility poles or our SCDOT poles. All fiber installations shall be on SCDOT right-of-way. Attachments to utility poles must be in accordance with joint use agreements. Overhead fiber costs are between $3 - $5 per linear foot while underground fiber costs $18 - $25 per linear foot.
Fiber pay items and specifications can be found Section(s) 677-3,677-4, 677-6, SC-M-675 Traffic Signals, Supplemental Technical Specifications.
State equipment contracts for fiber cable and appurtenances are maintained by SCDOT Network Services.

Fiber Communications Design / installation
Communications plans shall be drawn at a scale not smaller than 1” = 100’, [1000’] including identifying overhead and underground installations. Overhead installations will indicate pole numbers for shared use poles or new poles to be installed. Plans shall indicate existing r/w information. Right of way information can be obtained from SCDOT roadway plan library. All communication equipment will be designed within existing right-of-way. Underground installations shall indicate conduit size and type and locations of junction boxes. Cabinet locations for signals to be interconnected shall be shown. Communications plans will include fiber routes and sizes, devices, and necessary quantities.
If fiber run designs include shared use utility poles, SCDOT will obtain submit attachment request to appropriate utility company to determine if this is a viable option attach to the poles. Utility attachment agreements will detail responsibilities for make ready work and costs.
The following is a list of tasks included in designing Fiber Communications plans:
- Creation of System Base Map
- Field Review
- Utility Coordination
- Identification of Installation Locations
- Design and Plan Preparation
- Cost Estimate and Specifications
Fiber installation is a Type 3 Signal Activity, therefore installation can be procured through a construction letting or on by work order using the On Call Signal Construction contract, regardless of funding (federal, state).
Installation of fiber within letting typically requires fiber communications plans. Installation of fiber using On Call Signal Construction contract typically require strip map plans. Strip map plans do not include as much detail and the contractor typically coordinates with utility companies. SCDOT District Signal staff submits attachment requests.
Wireless Communication

Wireless communication is used to connect adjacent traffic signals with radio waves. Wireless broadband (WBB) equipment is installed at the top of signal poles in a manner to achieve the best reception between signals. In areas where communication gaps exist, due to curves or other barriers a wireless communications “bridge” may be installed to connect these gaps. The bridge would consist of WBB equipment plus electric service and equipment in a splice cabinet. Wireless communication should be considered as a viable option in areas where fiber can-not be installed overhead.

Wireless communication links including two WBB radios costs approximately $3000 per link. Installation of this link, including work at two signals is approximately $800.

Wireless communications pay items and specifications can be found in Section 677-7, SC-M-675 Traffic Signals, Supplemental Technical Specifications.

State equipment contracts for wireless communications equipment and appurtenances are maintained by SCDOT Network Services. This equipment resides on SCDOT network and is provided by SCDOT for installation by contractors.

Fiber vs. Wireless Communications

A comparison should be performed to determine what type of communications should be installed between signals. Figures 3-3a, 3-3b, and 3-3c give some comparison on installation costs, installation time and complexity, and annual costs.
Although a number of factors (can SCDOT use utility poles for fiber, is sight distance between signals available for radio communications) influence what is the best most viable form of communications, in general, fiber communications is more viable where signals are closely spaced over distances less than 3 miles. In addition, using cellular communications to access signals may be the most feasible option.

Fiber communications still gives the largest capacity for communications for advanced systems and traffic monitoring cameras, however technology advances make wireless and cellular communications an acceptable alternative. In some cases, wireless communications with a cell modem connection to the network is the most viable option.

Figure 3-3b
Example Communications Comparison of Costs- Fiber
Figure 3-3c
Example Communications Comparison of Costs - Cellular

Although cell modems seem to be the least expensive option, operating cameras, adaptive or other data intensive tools, cell modems may not provide enough band width. It is more typical to provide a mixed system of cell plus fiber, or cell plus wireless.
Meeting Street (US 1) & Sunset Blvd.
West Columbia, SC

Figure 3-4
Wireless Broad Band Communications Link btwn SCDOT building & signal @ Meeting Street/Sunset Blvd.,
Ethernet Switches
Ethernet switches are used to assign IP addresses to the various traffic signal devices. One Ethernet switch is needed per signal. Ethernet switches are available with a range of ports to accommodate the amount of equipment requiring an IP address.

Ethernet switches cost approximately $2500 per signal.

State equipment contracts for Ethernet switches and appurtenances are maintained by SCDOT Network Services. This equipment resides on the SCDOT network and is provided and installed by SCDOT.

Communications Between the Traffic Signal System and the Signal Network (Either SCDOT or Co-location)

Cell Modems
These devices are used to enable communications between the Traffic Signal Communications Network and the Signal System. Cell modems are used when the Signal System is not able to be connected directly to the SCDOT Communications Network. Initial costs to install the cell modem are typically in the $2k range and SCDOT pays a monthly fee (typically $38) to the service provider for this connection.

Point of Presence (POP)
The Point of Presence is the location where the Signal System is connected directly to the SCDOT Network, usually the ITS Network fiber along the interstate. The Point of Presence is the demarcation line that denotes maintenance responsibility. Any repairs required between the POP and the ITS fiber is the responsibility of ITS. Any repairs required between the POP and the Traffic Signal System communications is the responsibility of the District Signal Maintainers. The POP is typically within the traffic signal cabinet closest to the Interstate fiber. Initial costs to install the POP are typically in the $10k range, however there is no ongoing monthly cost for the POP.

Point to Multi-point
Wireless broadband communications can be used to provide communications between the network at the facility and the traffic signals.

Wireless radios can be installed on the top of buildings on water towers, or on communications towers. The elevated heights allow great line of site directly to traffic signals.
Traffic Signal System Operations Tools

Traffic Monitoring Cameras
Traffic monitoring cameras that can pan, tilt and zoom can be used to monitor and operate the signal system. Ethernet communications enable real time monitoring of signal systems. IT Services has an equipment contract to provide and configure these cameras. Any TM camera residing on the SCDOT Communications Network must be an approved IT device. The cost to furnish the TM cameras is typically $5k and the cost to install the TM cameras is typically $850.

As of August 2018, approximately 120 traffic monitoring cameras were installed at traffic signals. Another 150 traffic monitoring cameras are planned to be installed within the next five years.

Short Range Radio Device Detector System
(Origin/Destination Devices)

Short Range Radio Device Detectors can provide travel time, speed and destination information and are used to evaluate the operation of signal systems. These detectors should be used when major improvements are implemented, such as responsive or adaptive signal systems.

There are two types of detectors that measure different radio signals - Wi-Fi or Blue Tooth. These detectors do not pick up each vehicle as not all motorists have these type of devices. SCDOT’s current specification for this device measures blue tooth radio signals.

The detectors can be installed temporarily to provide before and after data for signal system improvements or they can be installed permanently to provide ongoing information about the performance of the signal system. It is beneficial to provide permanent detection on corridors that are part of an overall Traffic Management Center operation. The cost to furnish and install the Short Range Radio Device Detector System is typically $6-8k per device.
The following information should be used to design the signal plan. Other design standards include FHWA approved SCDOT Traffic Signal Supplemental Technical Specifications (SC-M-675) and the SCDOT Standard Drawings.

This manual is intended to detail SCDOT standard practice, as well as guidance concerning SCDOT’s expectations for signal plan formatting. This manual provides design parameters for relatively normal conditions; engineering judgment should be used for all signals including non typical conditions.

Signal Design Standards

Signal design shall be in accordance with:

- **Manual of Uniform Traffic Control Devices (MUTCD)**
 The MUTCD details standards for signing, marking and signals.

- **FHWA Traffic Signal Timing Manual**
 The [Traffic Signal Timing Manual](#) details methods to determine signal phasing and timings to serve traffic volumes.

- **SCDOT Traffic Signal Manual**
 The SCDOT Traffic Signal Manual is intended to detail SCDOT standard practice, as well as guidance concerning SCDOT’s expectations for signal plan formatting. This manual provides design parameters for relatively normal conditions; engineering judgment should be used for all signals including non typical conditions.

- **SCDOT Traffic Signal Supplemental Technical Specifications (SC-M-675), SCDOT Standard Drawings.**
 The SCDOT Supplemental Technical Specifications and SCDOT Standard Drawings detail installation methods for contractors, but are useful to engineers in designing signals and choosing pay items.

Signal Capacity - Volume to Capacity

Roadway capacity is generally 1,900 passenger cars per lane per hour (pcplph). Capacity at signals is reduced to percent green time for each phase. Signals are designed to provide green time for side streets only when cars are present, thus maintaining as much capacity as possible on the main line. Poorly timed / or maintained signals reduce roadway capacity, thereby reducing the value of the roadway asset. Below is an example of how roadway capacity is impacted by installation of a traffic signal.

Figure 4-1
Impact to Capacity (2 Phase)
Figure 4-2
Impact to Capacity (8 Phase)

Figure 4-1 shows the impact of a 2 phase signal on mainline roadway capacity, between 11% to 20% depending on cycle length. Figure 4-2 shows the impact of an 8-phase signal on mainline roadway signal capacity, between 20% to 32% depending on cycle length. The minimum number of signal phases is two phase, consisting of the main line phase and the side street phase. Each additional phase added to a traffic signal affects the capacity due to the required clearance between signal phase and the reduced percent of time serving the mainline through traffic. Engineers should review the traffic volumes and roadway capacity, as well as field conditions to determine the need for separate phases for left turns, concurrent phases, split phases for side streets, and overlaps. Left turn phase study information can be found in Chapter 1.

Signal Phasing
Traffic signal plans are developed to install new traffic signals, to revise existing traffic signals due to roadway construction, or to rebuild existing signals due to age of equipment.

- At new signals, engineers should determine what signal phases are needed to accommodate traffic movements and volumes. Based on a combination of roadway geometry, including number of lanes and lane usage, sight distance and traffic volumes, engineers should determine what signal phasing is needed.
- Once the signal phasing is determined, engineers should use a critical movement analysis to determine the length of green time to serve each phase. As detailed in Chapter 5 of the FHWA Signal Timing Manual, the following steps should be followed to determine Critical Movements see Figure 4-3:
 1. Record Demand Volumes, adjusting for 15 minute peak, heavy vehicles and lane balance
 2. Determine Critical Phase Pairs
 3. Calculate the Critical Volume
 4. Estimate the Cycle Length
- At existing signals revised due to roadway construction, engineers scan use existing signal phasing as well as proposed roadway geometry, including number of lanes and lane usage, sight distance, traffic volumes and accident history to determine what revisions to the signal phasing is needed. Once the signal phasing is determined, engineers should use a critical movement analysis to determine the length of green time to serve each phase.
- At existing signals where upgrades are needed due to age of equipment and where no roadway changes are planned, engineers should generally use existing phasing when developing a new signal plan. The District Traffic Engineer may request phasing or timing changes to address existing concerns with safety or signal operation.

In addition to determining the phasing and timings needed to accommodate vehicular traffic, engineers should also make a determination on how to accommodate pedestrians.
Signal Phasing

Left Turn Phasing

Left turn phase study information can be found in Chapter 1. Use the following information to prepare the signal plan for the various types of left turn phases.

Protected Only Left Turn Phases shall have a separate signal head, consisting of a RA, RA, YA, GA signal head for a single lane or two RA, YA, GA signal heads for two left-turn lanes. These should be used for protected-only left-turn phases and placed within the 20-degree cone of vision for the exclusive left turn lane. This signal head configuration eliminates the need for the left turn signal sign.
Protected/Permissive Left Turn Phase shall generally consist of a *four-section* flashing yellow arrow (FYA) signal head, RA, YA, YA, GA directly over the left turn lane. In certain cases a *five-section* (doghouse) signal head may be used, for example where the left turn movement is made from a shared left/through lane. If a *five-section* signal head is installed, install a ‘Left turn yield on Green ball sign (R10-12) adjacent to the *five-section* head.

Flashing Yellow Arrow (FYA) - In areas where left turn lanes are offset from the through lanes, installation of a FYA provides guidance to motorist directly over the left turn lane. For permissive-only operation one *three-section* signal head, (RA,YA,YA,) should be installed directly over the left turn lane with a sign adjacent (R10-12A) to the signal head. If protected-permissive operation is desired, a *four-section* flashing yellow arrow (RA,YA,YA,GA) left turn signal head should be installed where a separate left turn lane is present unless geometric issues or lateral signal spacing issues reduce the effectiveness of a separate FYA signal face over the left turn lane. Where an offset left turn lane is present and protected/permittted left turn operation is warranted, a *four-section* FYA left turn signal head shall be installed. A R10-12A sign should be installed adjacent to the FYA signal head, indicating that the left turn should yield to oncoming traffic with the flashing yellow arrow. Where protected/permittted left turns are provided with a *four-section* FYA and lagging operation of the protected left turn phase is anticipated, a FYA signal head (*three-section* for permitted only lefts or *four-section* for protected/permittted lefts) must be installed for the opposite approach to eliminate the yellow trap.

In conditions where the minimum signal head height (17’) cannot be provided due to utilities or other issues, a *three-section* flashing yellow arrow signal face that uses the bottom section to show both the steady green arrow (GA) and the flashing yellow arrow (FYA). This dual mode signal head is approved for use in Section 4D.20 of the MUTCD.

For additional guidance on Flashing Yellow Arrow, see *Traffic Engineering Guideline 7*. Also, see Figure 4-8 for FYA Overlap Chart for phase numbering conventions. Guidance on programming the controller and conflict monitor for FYA operation is detailed in Figures 4-51a, 4-51b, and 4-51c.
Changing from leading to lagging by time-of-day to improve progression is permissible as long if appropriate direction is provided to motorists for the opposing left turn movement; i.e., the opposing left turn movement has protected only phasing, a FYA signal head is provided over the opposing left turn approach lane, the opposing left turn movement is prohibited or not available (T intersection).

If an intersection is a candidate for Lead/Lag phases, special attention must be given to ensure a left turn trap is not created.

FHWA's Signalized Intersection Guide in Figure 4-4 explains how a left-turn trap works.

Figure 4-4
FHWA Explanation of Yellow Trap
Geometric Conflicts for Opposing Left Turns - In areas where operating simultaneous left turn movements is not permissible due to geometric conflicts, the left turn phases can be programmed for one left turn phase to be leading and the opposing left turn phase to be lagging. In areas where the opposing left turn lanes interlock due to offset (doglegged) side streets, the engineer may operate one approach as protected only lagging and the other as protected permissive leading, to avoid the conflict.

Variable Left-Turn Mode MUTCD 4D.17, Variable Right-Turn Mode MUTCD 4D.21 - Variable Left-Turn Mode operation consists of changing from Protected Only, Protected/Permissive, Permissive by time of day or other selection criteria.

Use of variable left-turn mode and/or variable right-turn mode at traffic signals is not a standard practice in South Carolina. An engineering study to evaluate the impact of this operation should be submitted for review and must be approved by SCDOT prior to installation.
Concurrent Phasing - Concurrent phasing is typically utilized to serve a right-turn movement in an exclusive right-turn lane during the appropriate left-turn phase. Concurrent phasing is typically combined in a five-section right-turn signal head, where the right-turn green arrow display operates concurrently with the appropriate left-turn phase. An example is shown in Figure 4-6.

Figure 4-6
Concurrent Phasing
Split Phasing - Split Phase operation is when phases operate sequentially rather than simultaneously and is commonly used for offset side streets where simultaneous through movements are not possible due to geometric configuration. Split phase operation is also used where heavy left turn/through movements oppose low volume movements or where roadway improvements to increase capacity are not possible and dual left turns are required to address capacity issues. An example is shown in **Figure 4-7**.
Phase Overlaps - Overlaps are signal phases that can operate during multiple signal phases such as flashing yellow arrow during the opposing green phase, that extend a green display on particular signal heads to ‘clear’ a designated area, or that operate signal heads are closely spaced signals. Example overlaps are shown in Figure 4-8 Flashing Yellow Arrow (FYA) Overlap, Figure 4-9 Timed Overlap and Figure 4-10 Complex Intersection Overlap.
When Timed Overlaps or Complex Overlaps are used, engineers should consider the need for additional signing, markings and signal indications to ensure motorists are given appropriate direction. For example, when a timed overlap is used to clear an area, a Stop Here on Red sign may be installed at the near side signal heads that turn red, when the far side signal heads display a green. Options for minimizing the visibility of the far side signal heads using louvers, programmable signal heads or 8 inch green displays may be considered to improve compliance.
Pedestrian Phasing

Signal phasing must take into account the time required to address pedestrian crossing movements. In most cases, pedestrian phasing operates concurrently with the parallel vehicle through phase and does not impact signal phasing, other than possible increases to required green time to accommodate pedestrian walking speeds. Signal phasing is impacted if exclusive pedestrian phasing (where pedestrians have the right of way and all vehicle phases are stopped with red displays) is needed to address specialized circumstances. For example, intersections where heavy left or right turn movements that conflict with pedestrian movements may be a candidate for exclusive pedestrian phasing. Following is guidance for engineers to determine what pedestrian treatment may be needed.

Pedestrian Treatment Design

Minimum Pedestrian Signal Treatment

Pedestrian accommodations at signals should be designed in cooperation with road designers as well as Traffic Engineers. The elements at the intersection, traffic patterns, presence of pedestrians, type of development and complexity of the signal phasing all play a role in deciding what type of pedestrian treatment is needed. Figure 4-11 depicts minimum pedestrian signal treatments for common roadway conditions. Figure 4-11 also details SCDOT’s standard concerning installation of curb ramps at signals where existing curbs are barriers and where a walkway is present.

As indicated in Figure 4-11, the pedestrian treatment is based on the presence of a path crosswalk, curb ramps. In addition, engineers should consider the following to ensure the appropriate pedestrian treatment is provided.

- Studies or official observations have documented pedestrian presence and crossing frequency.
- There exists physical evidence of pedestrian activity (i.e. a path) and logical beginning and end points for short trips (generally less than ½ mile; typically made on foot) on opposite sides of the intersection, even in isolated areas. Examples include, but are not limited to, the following:
 - Homes on one side, a grocery store or general store on the other
 - Homes on one side, a park or other attraction on the other
 - Motels on one side, a food establishment on the other
 - An established bus stop on one side, homes on the other
 - An established bus stop on one side, places of employment on the other

In addition, Figure 4-12 will assist project managers in determining if existing curb ramps must be updated to current standards. If installed, curb ramps should have Detectable Warning Surfaces (DWS). Crosswalks should be provided based on engineering judgement. Engineering judgement may dictate additional pedestrian treatments the development in the area would indicate a probable pedestrian presence.

Road designers make decisions concerning shoulder treatments, lane assignments, presence of medians or islands and curb ramps, which influence the signal designer’s decisions concerning the appropriate pedestrian treatment. In addition, the pavement marking designer also influences these decisions. Signal designers should coordinate closely with those individuals designing the roadway, developing the marking plans and operating the signal to ensure pedestrians are accommodated without negative impact to signal operations.

At signals with sidewalks on four sides and crosswalks marked on all four approaches the decision for pedestrian treatment type is typically very simple. In this situation, pedestrian heads and buttons are typically installed on each quadrant allowing pedestrian crossing on each approach. However many signalized intersections have a variety of pedestrian accommodations, such as sidewalk on one side only or on two approaches, and engineering judgement should be applied to decide on the pedestrian treatment.
Barriers should be removed with curb ramps only where a walkway is present.

<table>
<thead>
<tr>
<th>Sidewalk, Curb & Gutter, Existing Ramp</th>
<th>Curb & Gutter Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>No requirement to modify ramp</td>
<td>Existing sidewalk or worn path. Minimum treatments to install pedestrian heads, buttons, crosswalk, and to remove barriers by installing curb ramps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shoulder Section</th>
<th>Curb & Gutter Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>No sidewalk, no path</td>
<td>No sidewalk, no worn path</td>
</tr>
<tr>
<td>Minimum treatment is to install pedestrian button only, no crosswalk</td>
<td>Minimum treatment is to install pedestrian button only, no crosswalk</td>
</tr>
</tbody>
</table>

Figure 4-11
Minimum Pedestrian Treatments
Channelized Islands:
In situations where a pedestrian must cross an uncontrolled, channelized lane, such as a channelized right turn lane, the pedestrian treatment should be placed in the channelizing island. The island should be of sufficient size to accommodate ADA treatments for access to the pedestrian button. Appropriate crosswalk markings and signage should be provided on the uncontrolled channelized lane. Consideration should be given to the impact that trucks may have on the channelizing island (i.e. is sufficient turning radii provided to prevent trucks from running up on the island and hitting the pedestrian pole). If it appears that the island is not large enough or the turning radii is not sufficient, the island should not be used and the right turn movement should be included in the signal and stop controlled.
Crosswalks:
If a crosswalk is marked, it creates a ‘path’ and pedestrian heads should be installed. Therefore, crosswalks should be provided based on the conditions at the intersection, namely signal phasing, existing or expected pedestrian patterns, and safety. One or more crosswalks may be provided across the mainline roadway, based on engineering judgment. If only one crosswalk is provided across the mainline, adequate direction in the way of signs or marking should direct pedestrians to the crossing location. Pedestrian signals must be in place at each end of each marked crosswalk at the intersection, see MUTCD 4E.04 F.

Installation of Pedestrian Detectors only (usually push buttons)
Pedestrian detectors allow minimal interruption of the normal signal operation and should be considered prior to the installation of both pedestrian signal heads and detectors. Pedestrian detection should be provided at all actuated or semi-actuated traffic signals, unless determined not to be an appropriate pedestrian crossing. When pedestrian crossings are not appropriate, they should be restricted by signing.

Installation of Pedestrian Heads only:
Installation of pedestrian heads without pedestrian buttons may be appropriate in downtown business districts and other areas where pedestrian traffic is crossing regularly during business hours. Pedestrian heads may be installed without detectors, if sufficient crossing time is provided and the pedestrian phase is recalled each cycle, for the phase that is always on recall or for pre-timed operation.

Installation of Pedestrian Signal Heads & Detectors
The installation of pedestrian signal heads typically requires a larger cycle length to accommodate the Walk and Pedestrian Clearance signal settings. Pedestrian signal heads should be installed if a pedestrian path exists. A pedestrian path can be the presence of a marked crosswalk, presence of a sidewalk, or simply a worn out pedestrian path adjacent to the roadway.
if the traffic signals meet any the following conditions consider installing pedestrian heads and buttons:
• The signal will currently meet the Pedestrian Signal Warrant, per Section 4E.03 MUTCD.
• The crossing at the signal is an obvious established school crossing.
• An exclusive, protected phase is available for pedestrians in one or more directions.
• Where the signal phasing may be confusing to the pedestrian as to when to cross.
• At signals where pedestrians cannot see the traffic signal heads to make a crossing decision

Two Stage Pedestrian Crossing
SCDOT typically prefers having pedestrians cross the entire street without a stop in the median, however the following may be used in making a decision on two stage crossing operation:
• A two-state crossing requires a median that is sufficiently wide enough to store pedestrians.
• Providing sufficient pedestrian timing for one stage crossing is extremely detrimental to signal operation, resulting in severe delays and queuing
If two stage crossing is implemented:
• Additional detection should be provided in the median area.
• Appropriate signing should be provided to clearly direct pedestrians in safely navigating crossing

Pedestrian Hybrid Beacon
In locations where a signal may not be warranted or at midblock crossings, a pedestrian hybrid beacon may be installed as a pedestrian treatment. TG-26 Pedestrian Hybrid Beacon Guideline gives guidance on when this treatment may be approved. See Figures 4-50c,d for example plans. Although this treatment is classified as a beacon, a signal cabinet, controller is required to operate the Pedestrian Hybrid Beacon.
HAWK Design

Timing: The ability to balance the needs of the pedestrian and the delay of the driver is a valuable component of the pedestrian hybrid beacon. Extensive red light time when pedestrians no longer need it to cross safely can encourage violations. The flashing yellow interval typically lasts for five seconds. The duration of the solid yellow light should be calculated based on existing field conditions and the SCDOT Traffic Signal Design Guidelines.

The solid red light displayed to drivers is equal to the pedestrian walk indication. The flashing red indication is the same as the flashing hand indication for the pedestrian countdown head and is determined by the width of the crossing.

Signing and Marking: A pedestrian hybrid beacon shall be used in conjunction with signs and pavement markings to warn and control traffic at locations where pedestrians enter or cross a street or highway. A Crosswalk Stop on Red (symbolic circular red) (R10-23) sign shall be mounted adjacent to a pedestrian hybrid beacon face on each major street approach. If an overhead pedestrian hybrid beacon face is provided, the sign shall be mounted adjacent to the overhead signal face.

A Pedestrian (W11-2) warning sign with an AHEAD (W16-9P) supplemental plaque shall be placed in advance of a pedestrian hybrid beacon. A warning beacon may be installed to supplement the W11-2 sign, which, if installed, should be programmed to flash only when the pedestrian hybrid beacon is not in the dark mode.

A pedestrian hybrid beacon shall only be installed at a marked crosswalk. A stop line shall be installed for each approach of the major street. A pedestrian hybrid beacon may be installed at midblock or at intersections where the side street is controlled by a stop sign. Both applications are illustrated in the following example plans. Pedestrian hybrid beacons should not be placed in proximity to signalized intersections. There shall be a minimum of 300' distance between any proposed hybrid beacon and a signalized intersection.

An example signal sequence is shown in MUTCD Figure 4F-3 and shown below:
Placement of Pedestrian Signal Heads, Buttons, Signage

- Pedestrian heads should be placed where they are clearly visible within the entire crosswalk.
- When not activated, and if sufficient time does not exist during the minimum green time for the active phase, the pedestrian signal head displays should rest in the solid hand mode. If adequate time is available in the minimum green time, the pedestrian signal head display may operate without activation.
- Pedestrian buttons should be placed in accordance with MUTCD see Figure 4-13.
- Pedestrian detectors (buttons) or heads should be supplemented with the use of proper signs to indicate appropriate signal use for pedestrians and/or to provide explanation and guidance to the use of the detector (R10-3e, R10-4).
- Engineers should consider installing the following signs based on engineering judgement:
 - No Turn on Red (R10-11)
 - Turning Traffic must Yield to Pedestrian (R10-15)
 - Other tools for more complex pedestrian crossings include blankout signs restricting right turn movements or right turn Flashing Yellow Arrow (FYA) signal heads

Countdown Signal Heads

New and replacement pedestrian signal heads will use raised hand and walking man with countdown pedestrian heads and should comply with SCDOT Material Specifications Section and QPL.

Accessible Pedestrian Signals (APS)

Accessible Pedestrian Signals consists of pedestrian equipment that is audible or vibro-tactile or both to provide additional guidance to visually impaired pedestrians. Installation is site specific and based upon request. All requests for APS shall be reviewed by the District Traffic Engineer. For additional information see sections 4E.09 through 4E.13.

Restricting Pedestrian Traffic

Engineers may determine that allowing pedestrian movements would present a serious consistent safety concern. In these cases, pedestrian crossings should be prohibited by using R9-3-12 (NO PEDESTRIAN CROSSING) signing. Restricting pedestrians at a particular intersection can be accomplished through appropriate signing and guidance, to preferable crossing locations.
Signal Cycle
After the signal phases are determined, engineers use turning movement counts to determine critical green times for each signal phase (see Figure 4-3).

Although not shown on the Signal Settings Chart, determining the signal cycle is vital to providing a basis for signal system operations. Signals in a system must have the same cycle length (or a multiple such as double or half cycles) to provide progression with the offset settings. See Chapter 6 Signal Systems for more information. The signal cycle is the sum of the maximum green settings, the yellow change and the red clear settings for each non-compatible phase. The signal may not operate a full cycle each time, since some phases may 'gap out' or even be skipped, based on lack of demand. This is true, especially in non-peak traffic times. Signal cycles should be as short as possible, to reduce delay and to serve each phase as many times as possible during a peak hour.

Cycle Length Calculation Example:

Sum the larger values of:

- Phases 1 and 5 (maximum green plus yellow plus red) +
- Phases 2 and 6 (maximum green plus yellow plus red) +
- Phases 3 and 7 (maximum green plus yellow plus red) +
- Phases 4 and 8 (maximum green plus yellow plus red) = Maximum Cycle Length

<table>
<thead>
<tr>
<th>Signal Complexity</th>
<th>Commonly Assumed Cycle Length(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissive left turns on both streets</td>
<td>60</td>
</tr>
<tr>
<td>Protected left-turns, protected-permissive left turns, or split phasing on one street</td>
<td>90</td>
</tr>
<tr>
<td>Protected left-turns, protected-permissive left turn phasing, and/or split phasing on both streets</td>
<td>120</td>
</tr>
</tbody>
</table>

Figure 4-14

![Figure 4-14](image)

Figure 4-15
Example Cycle Lengths

![Figure 4-15](image)

60 second cycle length (2 phase)
120 second cycle length (8 phase)
Signal Plans

(1) Signal plans shall be signed and sealed by a South Carolina Professional Engineer (PE) seal.
(2) Signal plans are the property of the District office and/or the local government.
(3) Every effort should be made to load CADD files and electronic images of signal plans on the SCDOT Signal Inventory program for easy access.
(4) Plans for flashing beacons are more schematic in nature and do not require a PE seal.
(5) A record of the location and type of signal flashing beacon should be maintained within the SCDOT Signal Inventory program.
(6) Signal plans should include accurate depictions of rights-of-way (referenced back to file # or deed, per Instructional Bulletin No. 2012-2, pavement markings, signal head placement, span wires, driveways, sidewalks, control of access, and also should indicate signal timings, speed limits, grades, route names and numbers, adjacent development, coordination details etc. Example signal plans are shown in Figures 4-50a and 4-50b.

Roadway Geometry

Signal plans should be drawn to scale, depicting roadway elements including lanes, markings, sidewalk, poles and other elements to depict proposed conditions. For roadway projects, engineers should use the roadway design plans and the signing and marking plans to develop signal plans. For signal upgrade projects where no roadway improvements are planned, engineers may use roadway plans from plan library or aerial images to develop more schematic signal plans that are generally drawn to scale.

Signal plans should depict graphical information showing conduit, splice boxes, signal support poles, detection, signal heads, span wire, messenger wire, signal cabinet and pedestrian features. All signal equipment is shown on the signal plan but not ‘to scale’ as signal construction is heavily reliant on location of overhead and underground utilities. Utility survey information is generally not available, therefore actual placement of signal equipment is field determined by the contractor in accordance with the standard drawings and utility coordination. In addition to signal equipment, markings should be shown, including stop bar, arrows, crosswalks and painted islands. Any signage related to the signal should be details, as well as shoulder mounted signals that are pertinent. Sidewalks, curb ramps and islands should also be shown. Intersecting roadways or driveways within 400 feet along the mainline and within 200 feet along the side street should also be shown.
Right-of-Way information
Existing and proposed right-of-way should be shown on the signal plan in accordance with [SCDOT Instructional Bulletin No 2012-2 Verification of Present Right of Way (R/W)](https://example.com) on plans prepared by or for SCDOT. The right of way is to be verified and noted on the plans indicating the right of way width measured from the centerline and the source of verification (initials of the designer).

![Figure 4-17](image.png)

Figure 4-17
Example R/W Labeling
Placement of Signal Equipment

Signal Heads

Placement - Signal heads should be located between 40’ and 180’ from the stop bar for each approach. There should be a minimum of two signal heads per approach, and they should be within a 20-degree cone of vision. Signal heads should have a minimum spacing of 8’ apart and a maximum spacing of 16’ apart. There should be one (1) signal head per lane for each through lane. The vertical clearance from the pavement to the bottom of the signal head shall be 17-19’. See SCDOT Standard Drawings.

Size - The SCDOT uses 12” section signal heads as a standard installation size. In special situations, 8” signal heads maybe used, such as the bottom yellow on emergency flashers or the far-side green at a timed overlap for clearance.

Visibility - The signal heads should be visible for the minimum distances shown in the Manual on Uniform Traffic Control Devices Chapter 4 for various approach speeds. If this visibility cannot be achieved, a near-side signal head should be installed to provide appropriate visibility.

Back plates w/ 2” Yellow Retroreflective Border (Type XI-eleven) - The back plate with retroreflective border should be used for all approaches on signals with 45 mph or greater approach speed. See Standard Drawings for installation details.
Signal Cabinet

Visibility - The signal cabinet should be located to prevent sight distance blocking for motorists making a right turn on red. In addition, the cabinet should be placed to allow a signal technician visibility of the intersection when working on the cabinet.

Placement - The signal cabinet should be located as far as possible from the edge of roadway and adjacent to the signal support structure in that quadrant. The cabinet is generally in the quadrant closest to the electrical transformer. The electric service is also located close to the signal cabinet, generally on a signal pole or separate pole or pedestal.

If a rebuild project requires replacement of the existing signal cabinet, in general all new span wire, signal heads, cable for signal heads should be installed for ease of transition.

Size - The standard cabinet to be installed is a 332A Cabinet, which is base mounted. A smaller 336S cabinet can be installed either on a signal pole or base mounted, if right of way and space is severely limited (such as a downtown location where buildings are very close to the roadway). A 336 cabinet does not have a lot of spare room for communications equipment, therefore provisions should be made if communications equipment is needed.

Aesthetic Treatment - Traffic Signal Cabinets are constructed of aluminum and have a natural silver metallic finish. Aesthetic elements such as powder coating of one solid color (black, green or brown) or vinyl wraps are not standard equipment for SCDOT but are acceptable under approved encroachment permit or other agreement, such as a Financial Participation Agreement (FPA) within a construction project. Although powder coating or vinyl wraps are the only acceptable methods of aesthetic treatment. SCDOT prefers the vinyl wrap treatment over powder coating since the vinyl wrap can easily be removed with little cost outlay if issues arise. Artistic renderings painted directly on the cabinet are not acceptable.

Installation
- These aesthetic treatments can be installed upon approval of an encroachment permit submitted by the appropriate local government.
- All costs associated with these aesthetic treatments are the responsibility of the local government.
- If this treatment is desired by the local government during an SCDOT construction project involving signal reconstruction or installation, this treatment must be included in the agreement between SCDOT and the local government. The local entity will be required to pay the ENTIRE difference in cost associated with the aesthetic treatment.
- The installation has to be performed under the supervision of the appropriate signal maintenance staff and SCDOT will inspect the installation.
- The aesthetic treatment must not interfere with the ventilation of the cabinet.
- The aesthetic treatment must not cause the temperature to go up in the cabinet. An additional fan may be required (at the local government’s expense) installed to mediate this issue.
- Advertisement is not allowed on the traffic signal cabinet.
- SCDOT reserve the right to review aesthetic treatment for content and to deny any treatment that may be a distraction to the motoring public.

Maintenance
- The local government is responsible for maintenance of aesthetic treatment. The Department will not maintain the quality of the aesthetic treatment.
- If any operational issues arise, SCDOT reserves the right to remove the treatment or require the local government to replace the cabinet.
- Although the Department will coordinate with local governments concerning needed equipment replacement, if cabinets are changed out, SCOOT is not responsible or liable for the aesthetic treatment. SCDOT is not obligated to replace in kind when items require replacement due to malfunction or age.
- SCDOT reserves the right to remove any aesthetic treatments that are in disrepair.
Pedestrian Treatments
Placement of pedestrian treatments are described earlier in this chapter.

Detection
Placement and types of detection are described later in this chapter.

Conduit / Splice Boxes
Splice Boxes - Each signal support pole shall have a splice box installed adjacent to accommodate conduit connections for electrical cable and signal equipment. Signal splice boxes shall be installed along conduit runs approximately on 150’ spacing. Typical size for splice box is 13’ x 24” x 18”. Larger splice boxes shall be installed at the signal cabinet and for underground fiber communications runs, 17” x 30” x 24”. More information concerning splice boxes is provided in Chapter 5, SCDOT Traffic Signal Supplemental Technical Specifications and SCDOT Standard Drawings.

Conduit - All electrical cable should be placed in conduit runs. Placement of conduit and splice boxes shall be shown behind the sidewalk or adjacent to the edge of the roadway. Conduit can be installed in a variety of ways with various types of conduit. Schedule 80 PVC is the most common electrical conduit used. HDPE (High Density Polyethylene) Rolled Conduit is also used. Conduit is generally trenched, however, under driveways and roadways conduit is installed by directional boring. Common sizes for PVC conduit is 1”, 2” and 3”.

Trenching/Riser
The typical installation method for Schedule 80 PVC is trenching. Trenching is accomplished either by hand digging or mechanically using a ditch witch. Schedule 80 PVC conduit is also installed on poles as risers. Risers are attached with steel bands.

Directional Boring
Where conduit runs intersect driveways or roadways, directional boring is most commonly used. Directional boring uses HDPE rolled conduit.

Conduit for Inductive detection
At the edge of the roadway, a 1” conduit should be provided from the sawcut(edge of roadway) to the splice box. If sidewalk is present, the conduit is installed under the sidewalk to the splice box by directional boring, drilling or other acceptable method.

More information concerning conduit is provided in Chapter 5, SCDOT Traffic Signal Supplemental Technical Specifications and SCDOT Standard Drawings.

Typical Signal Signs
Typical signal signs can be used to improve the safety or operation at a stop and go traffic signal. Guidelines for their use can be found in the Manual on Uniform Traffic Control Devices.

Street Name Signs
Street name signs can be placed on signal span wires or mast arms by local governments. SCDOT does not participate in maintenance of street name signs. Street name signs should typically be placed between signal heads if the sign does not interfere with the proper placement/spacing of the signal heads. Mounting hardware for signs on span wire are incidental to furnish and install pay item for overhead signs, however additional pay item must be provided for furnish and install pay item for overhead signs mounted on mast arms.

Overhead Lane Control signs should be used for signalized intersections that include lane drops, multiple-lane turns, shared thru-turn lanes, and other unexpected lane use.

Overhead Regulatory signs common at signals are shown below:

- [LEFT TURN YIELD ON FLASHING](#)
- [LEFT TURN YIELD ON GREEN](#)
- [NO TURN ON RED](#)
- [TURNING VEHICLES TO](#)
- [TURNING VEHICLES TO](#)
- [STOP HERE ON RED](#)
- [STOP HERE ON RED](#)
Signal Support Poles

Placement -
SCDOT’s typical signal design consists of four signal supports, one in each quadrant. Signal support poles should be 5’ to 10’ from the edge of the roadway when curbing is present. The standard drawings allow signal poles to be a minimum of 2’ from face of curb, however this distance does not accommodate future sidewalk or pedestrian treatments. Where no curb is present, signal poles should be place 10-15’ from edge of the roadway. The heights of the poles should be determined by the length of the span between poles and the height of existing utility lines. Pole placement should consider both overhead and underground utilities.

In general in accordance with Preconstruction Design Memorandum 13 (PCDM-13 dated 1/10/2018) - Depicting Proposed Signal Poles and Signal Cabinets on Roadway Design Plans, roadway design plans shall depict the approximate location of all proposed signal poles and signal cabinets in order to adequately address right of way needs and potential utility conflicts. These locations shall be identified during the Design Field Review (DFR) and when signal plans are developed, the proposed locations should match the locations shown on the roadway plan set. All other signal elements are located schematically and not generally to scale.

Signal Span Wire
The SCDOT standard placement for signal support poles is one pole in each quadrant, resulting in a box span wire configuration, using 3/8” galvanized steel cable. Span wire allows signal support placement to be quite flexible and field conditions may require signal pole placement to be more trapezoidal than square in nature. If appropriate distances between signal heads and stop bar cannot be achieved with pole to pole spans, modifications to the span can be made. A modified box span can also be used for optimum signal head placement at wide intersections or to accommodate skewed intersections.

Messenger Cable
Messenger cable (1/4” galvanized) should be used to provide overhead cable connections such as communications cable (fiber) or detection home run cable.

Selection of Signal Support Type:

Steel Poles
Steel poles are SCDOT’s standard signal support pole. Every effort should be made to provide four steel poles, one per quadrant. The typical steel pole height is 28’ for two to three lane section roadways. Five lane section or wider roadway sections may require 32’ steel poles. In areas where roadways are narrow and overhead utilities are low, 26’ steel poles may be required. Foundations for steel poles are detailed in the SCDOT Standard Drawings and Traffic Signal Supplemental Technical Specifications. Steel poles provide internal conduit for electric cable and communications.

Steel poles are easier to install than concrete poles. Steel Poles can be powder-coated to provide a more aesthetic look to the traffic signal. Pedestrian poles, signal heads, pedestrian heads may also be powdercoated. These treatments typically add very little cost to the overall signal installation costs, however if project budgets are limited, local governments may be asked to participate in the cost to obtain this aesthetic treatment.

Wood Poles
Wood poles are not typically used unless the signal is placed in an area that is scheduled for construction. If wood poles are installed, back guys must be installed, requiring sufficient right of way for 1 to 2 back guys. Wood poles are the least expensive signal support pole, however all electric cable must be run in riser attached to the outside of the pole. In addition, pedestrian treatments are also installed on the wood pole, which can crowd the wood pole. Wood poles also tend to lean and should be replaced more often than steel or concrete poles.

Typical wood poles used at signals are 35’ or 45˚ wood poles. Wood poles are placed in drilled holes and backfilled with clean earth or sand.
Concrete Poles
Concrete poles are typically used at very wide intersections because they can support span wire spans without the sag that may occur with steel poles. Concrete poles require boom trucks to install due to the weight, therefore they are more difficult to install. Concrete poles also have conduit interior for electric cable.

Typical concrete poles used at signals are 35’ or 45’ in length. Concrete poles are placed in drilled holes and backfilled with Class 3000 concrete. Concrete poles provide internal conduit for electrical cable and communications.

Utility (Shared Use) Pole
If there is not sufficient room or right of way to install steel poles, signals span wire can be installed on existing utility poles. Utility coordination is required to obtain permission to attach span wire, back guys and conduit to shared use poles. As indicated with the wood pole description above, any electric cable must be installed in riser (conduit) and attached to the pole, as well as pedestrian treatments, if pedestrian poles are not installed.

Mast Arm Poles
Mast arms are not the SCDOT Standard for signal support poles. Mast arms are typically more expensive than steel or concrete poles and require extensive underground utility coordination and conduit placement. In addition, mast arms require greater lead time in ordering and delivery. Lastly, mast arms must be sufficiently long to accommodate signal head placement over left turn lanes. Therefore in most cases, mast arms are not the most feasible option for signal supports.

Mast Arm Feasibility
During signal design the following issues may arise that could indicate that mast arms may be more feasible to facilitate signal installation than SCDOT’s standard steel pole installation, one per quadrant.

- Insufficient right of way to allow signal poles in each quadrant, when right of way procurement will unduly delay the project or cost to buy the right of way is more than installation of a mast arm in another quadrant
- Overhead utility issues that restrict installation of steel poles in each quadrant
- Underground utilities that restrict installation of steel poles in each quadrants
- Unique lane arrangements that require rigidly mounted signal heads for safety, such as

If Mast Arms are the most Feasible Option - If SCDOT determines that mast arms are the most feasible option, then SCDOT will approve the mast arm installation as part of the project, with no additional cost to the local government and no requirement for mast arm maintenance for the local government.

If the local government is requesting mast arms as part of the signal design, then the local government should conduct an engineering study to determine if mast arms are the most feasible design option. The engineering study should be reviewed by the appropriate District Traffic Engineer (DTE). The DTE shall make a decision on feasibility of mast arms versus SCDOT standard signal supports. SCDOT to determine feasibility as this affects the cost of the signal installation.

When funding has been identified and obtained for roadway work and traffic signals are included in said funding, and circumstances indicate that mast arms are the most feasible, no agreement is needed and SCDOT will include mast arms in the design of said improvements and maintain the mast arms.

If Mast Arms are not the most Feasible Option
SCDOT recognizes that local governments often desire mast arm installations for aesthetic purposes. Since, mast arm installation costs typically exceed the costs of standard signal installations using span wire and steel poles, funding for said mast arms should be provided as discussed in Engineering Directive 33, SCDOT Mast Arm Standards. A Financial Participation Agreement (FPA) should be prepared to detail cost responsibilities using following chart.
Information needed to include Mast Arms in Projects
The following information should be obtained to appropriately design mast arm signals and prepare agreements for financial participation and maintenance.

<table>
<thead>
<tr>
<th>Information needed to include Mast Arms in Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Who is responsible for signal design?</td>
</tr>
<tr>
<td>(local government, consultant or SCDOT staff)</td>
</tr>
<tr>
<td>2. Who is responsible for mast arm foundation / mast arm signal support design?</td>
</tr>
<tr>
<td>(local government, consultant or contractor)</td>
</tr>
<tr>
<td>This is not always the same entity as who performs the signal design.</td>
</tr>
<tr>
<td>• If local government provides the design:</td>
</tr>
<tr>
<td>include said design in plans for better pricing during letting.</td>
</tr>
<tr>
<td>• If the design is to be included as a pay item and is the responsibility of the contractor:</td>
</tr>
<tr>
<td>consider using pay item 6888174 for mast arm foundation installation including concrete and rebar that uses CY as unit cost.</td>
</tr>
<tr>
<td>Since the size of the foundation can only be estimated prior to the letting, using the CY measured pay item requires less risk to the contractor when pricing the design/furnish/install mast arm cost.</td>
</tr>
<tr>
<td>• When will the geotechnical study be completed to determine the soil type at the location?</td>
</tr>
<tr>
<td>(prior to letting or after letting within ‘design, furnish & install’ pay item)</td>
</tr>
<tr>
<td>The soil type and length of arm determines the size of the foundation.</td>
</tr>
<tr>
<td>• Ensure the designer designs for the worst case scenario loading, either as indicated in the SCDOT specifications or what is provided on the signal plan</td>
</tr>
<tr>
<td>• How many mast arms are required, and are they dual arms or single arms?</td>
</tr>
<tr>
<td>Many designs try to minimize the number of mast arms by using 2 dual mast arms.</td>
</tr>
<tr>
<td>3. Who will furnish the mast arm?</td>
</tr>
<tr>
<td>(Local government or contractor)</td>
</tr>
<tr>
<td>This information is needed to determine what pay items are needed.</td>
</tr>
<tr>
<td>If the local government is providing the mast arm, they should also provide the mast arm foundation / mast arm signal support design, as this is typically done by the mast arm vendor. The pay items to be included in the project should be install mast arm, install mast arm foundation.</td>
</tr>
<tr>
<td>Also, if project is federally funded, and the local government provides the mast arm, a public interest finding must be submitted and approved by SCDOT. Federally funded projects typically require contractors to provide all materials not listed in a public interest finding.</td>
</tr>
<tr>
<td>4. Who will install the mast arm?</td>
</tr>
<tr>
<td>(Contractor or local government)</td>
</tr>
<tr>
<td>5. What type of mast arm is desired?</td>
</tr>
<tr>
<td>(standard or decorative with fluted arms),</td>
</tr>
<tr>
<td>decorative items such as skirt or other decorative features.</td>
</tr>
<tr>
<td>powdercoated color,</td>
</tr>
<tr>
<td>over base or over galvanized?</td>
</tr>
<tr>
<td>Should the mast arm match other mast arms in the area?</td>
</tr>
<tr>
<td>If so, local government should provide details/specifications of decorative elements.</td>
</tr>
<tr>
<td>6. Is luminaire desired, what type?</td>
</tr>
<tr>
<td>(above the mast arm or below the mast arm)</td>
</tr>
<tr>
<td>If so require local government to provide luminaire type/ design/ specifications and placement. The luminaires mounted above the mast arm requires a taller pole than the standard mast arm (See standard drawing 675 115-02 (Traffic Signal Pole with Mast-arm)). Ensure a pay item is included in the project to furnish and install the luminaires and the mounting hardware.</td>
</tr>
<tr>
<td>7. Who will be responsible for future maintenance of the mast arm?</td>
</tr>
<tr>
<td>8. Is Agreement needed?</td>
</tr>
<tr>
<td>Financial Participation Agreement detailing financial responsibilities</td>
</tr>
<tr>
<td>(local governments pay for the decorative elements)</td>
</tr>
<tr>
<td>Maintenance Agreement</td>
</tr>
<tr>
<td>(not needed is local government is already participating in Signal Maintenance Agreement)</td>
</tr>
<tr>
<td>9. Ensure signal design package addresses the additional engineering and coordination during construction.</td>
</tr>
<tr>
<td>There is typically a 6 month waiting time between ordering and delivery of mast arms, once the mast arm lengths and field locations have been mutually determined by contractor and SCDOT.</td>
</tr>
</tbody>
</table>
Methods to install mast arms
1. Mast arms can be installed as part of a typical construction letting managed by SCDOT.
2. Local governments may use the Fixed Price On Call Signal Contract to install mast arms with their own funding. There are over 10 signal contractors that have agreed to the fixed prices in the contract that can be contacted by the local governments to determine if the contractors will honor these prices for local government work.
3. Local governments will be required to apply for an encroachment permit to perform any work on SCDOT right of way.

Encroachment Permit Requirements For Mast Arm Installation
- A mast arm agreement must be in place between SCDOT and the appropriate local government prior to installation of mast arms. SCDOT shall not enter into a mast arm agreement with a private entity.
- All work must be performed under an approved encroachment permit or within the scope of signal work planned during an SCDOT construction project. The local government must be the applicant on the encroachment permit.
- Mast arm installation, necessary conduit placements, and signal head or sign installation (directional boring, wiring, signal head placement, etc.) shall be the responsibility of the local government and performed by an SCDOT approved contractor.
- All signal work shall meet SCDOT Standard Specification for Highway Construction, Signal Standard Drawings and SCDOT Signal Specifications and conform to the Manual on Uniform Traffic Control Devices (MUTCD). The local government or the SCDOT-approved contractor shall contact the appropriate SCDOT signal shop at least two weeks prior to beginning the installation.
- The local government shall be responsible for maintenance of the traffic signal during installation and responsible for any work required for up to sixty days after construction (typical burn-in period).
- The local government shall include a signal plan with the permit. This plan shall be developed within the guidelines and format of SCDOT’s standards and specifications and stamped by a professional engineer.
- The local government shall be responsible for mast arm and foundation design and provide approved drawings stamped by a professional engineer. The local government shall also be responsible for maintenance, repairs, and replacement of mast arms, all associated hardware in or on the mast arm, all conduit maintenance and replacements, and signal head attachments throughout the use of mast arms at the signal location.
- The local government or the SCDOT-approved contractor shall contact the appropriate SCDOT signal shop at least two weeks prior to beginning the installation.
- Documentation for each mast arm, as indicated on the Mast Arm Information form, must be provided with the encroachment permit application. This documentation should include manufacturer cut sheets and specifications. A copy of this information should also be retained by the local government.
- SCDOT shall approve the desired color of the mast arm. The manufacturer information and color code shall be included on the mast arm information form. Mast arms are to be powder-coated, not painted.
- Electrical service meter enclosure must be in accordance with SCDOT specifications.
- The design engineer shall ensure that conduit runs are sufficient and of proper size to meet the electrical codes for the required number of conductors. The controller conduit must be placed in the controller pole.
- Luminaries on top of the mast must be separately metered, since SCDOT will not pay electricity costs for these devices.
- The local government must perform an annual inspection of all mast arms and certify that the mast arms are in good repair. A copy of these inspection forms must be sent to the appropriate SCDOT signal shop, along with photos of the mast arms. Any visual damage to mast arms must be detailed on the inspection form. SCDOT reserves the right to require the local government to replace damaged mast arms. If the local government does not have sufficient funding to replace a mast arm, SCDOT will install a wood, concrete, or steel pole and span wire mount the associated signals until the local government can fund the mast arm replacement, as stipulated in the Emergency Repairs section.
Single Mast Arm, Galvanized, Non decorative, no luminaire
Standard yellow pedestrian heads and signal heads

Dual Mast Arm, Galvanized, Non-decorative, with luminaire
Standard yellow pedestrian heads and signal heads
Single Mast Arm, Powder-coated, Decorative (skirt), Luminaire (below mast arm)
Standard Yellow pedestrian heads and signal heads
Decorative/Powder-coated pedestrian poles

Dual Mast Arm, Powder coated, Non- decorative, with luminaire mast arm
Powder-coated pedestrian pole, standard yellow pedestrian heads and signal heads
Dual Mast Arm, Powder-coated, Decorative (skirt, truss style arm), no luminaire
Standard Yellow pedestrian heads and signal heads
Decorative/Powder-coated pedestrian poles with luminaires (for street lighting)

Dual & Single Mast Arms, Powder-coated, Decorative (skirt, fluted), no luminaire
Standard Yellow pedestrian heads and signal heads
Decorative/Powder-coated treet light pole used as pedestrian poles
Mast Arms with arched arms

Skirt for Mast Arm

Adapter Plate for Mast Arm

Decorative mast arm cap
Mast Arm Inspection Form

<table>
<thead>
<tr>
<th>Mast Arm 1</th>
<th>Mast Arm 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspector:</td>
<td>Inspector:</td>
</tr>
<tr>
<td>County:</td>
<td>Route 1:</td>
</tr>
<tr>
<td>Mast Arm Maintaining Agency:</td>
<td>Name:</td>
</tr>
<tr>
<td>Custom ID Signal:</td>
<td>Route 2:</td>
</tr>
<tr>
<td>Signal Location:</td>
<td>Name:</td>
</tr>
</tbody>
</table>

Mast Arm 1

- **Quadrant / location:**
- **Single- or Dual-arm:**
- **Signal heads (#, type, cond):**
- **Signs (#, type, size, cond):**

Document condition of the following (rust, dents, cracks, exposed wires, etc.):

- **Arm / boom:**
- **Pole / mast:**
- **Hand hole cover:**
- **Skirt / base / foundation:**
- **Junction box:**
- **Other comments:**

<table>
<thead>
<tr>
<th>Mast Arm 3</th>
<th>Mast Arm 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadrant / location:</td>
<td>Quadrant / location:</td>
</tr>
<tr>
<td>Single- or Dual-arm:</td>
<td>Single- or Dual-arm:</td>
</tr>
<tr>
<td>Signal heads (#, type, cond):</td>
<td>Signal heads (#, type, cond):</td>
</tr>
<tr>
<td>Signs (#, type, size, cond):</td>
<td>Signs (#, type, size, cond):</td>
</tr>
</tbody>
</table>

Document condition of the following (rust, dents, cracks, exposed wires, etc.):

- **Arm / boom:**
- **Pole / mast:**
- **Hand hole cover:**
- **Skirt / base / foundation:**
- **Junction box:**
- **Other comments:**

NOTE

- Submit form, with pictures depicting any indicated damage, to the corresponding SCDOT District Signal Shop.

SCDOT TRAFFIC SIGNAL MANUAL - CHAPTER 4

4-31

DECEMBER 1, 2018

SCDOT TRAFFIC SIGNAL MANUAL

TRAFFIC SIGNAL DESIGN
Signal Plan Drawing

1. Signal plans shall be signed and sealed by a South Carolina Professional Engineer (PE) seal.
2. Signal plans are the property of the District office and/or the local government.
3. Every effort should be made to load CADD files and electronic images of signal plans on the SCDOT Signal Inventory program for easy access.
4. Plans for flashing beacons are more schematic in nature and do not require a PE seal.
5. A record of the location and type of signal flashing beacon should be maintained within the SCDOT Signal Inventory program.
6. Signal plans should include accurate depictions of rights-of-way (referenced back to file # or deed, per Instructional Bulletin No. 2012-2, http://www.scdot.org/doing/technicalPDFs/instructionalBulletins/ib12-2.pdf), pavement markings, signal head placement, span wires, driveways, sidewalks, control of access, and also should indicate signal timings, speed limits, grades, route names and numbers, adjacent development, coordination details etc. An example Signal Plan drawing can be found at the end of this chapter, along with a signal plan checklist. When reviewing a signal plan, there is a helpful guide to follow that is also in the back of this chapter.

Descriptions of items shown on the signal plan:

Figure 4-19
Signal Plan Border and Charts
PE Seal - Signal plans should be prepared under the supervision of a South Carolina registered engineer. The signal plan should be signed and sealed by the same engineer.

North Arrow - Signal plans should have a north arrow to indicate direction.

Plan Information Chart - This chart details project information in the upper right corner of the plan.

<table>
<thead>
<tr>
<th>FED. ROAD DIV. NO.</th>
<th>STATE</th>
<th>COUNTY</th>
<th>PROJECT ID</th>
<th>ROUTE NO.</th>
<th>SHEET NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Map/Grade/Speed Chart

Speed Chart - This chart details the general location as well as approach grades and speeds. This information is used in calculating Yellow and Red Clearance Times.

Title Block - The Title Block is placed on the lower right of the signal plan and details location information and revision information.

Figure 4-20

Various Signal Plan Elements
Signal Plan Charts
The following information will detail how to fill out the following charts on the signal plan:
• Signal Equipment Chart
• NEMA Phasing Chart
• Table of Operations or Phase Sequence Chart
• Signal Timing chart
• Vehicle Detection Chart

Signal Equipment
The signal equipment chart (Figure 4-21) details the controller type, cabinet type, number of detector units, pedestrian heads/detectors, traffic signal heads lens description per phase and pedestrian heads by phase. Overlap information is also depicted in this chart.
SCDOT Preferred Equipment is 332A (170 model) Cabinet, 2070 Controller, 2010 IP conflict monitor, signal heads with back plates with retro-reflective 2” yellow border (TYPE 11 (eleven) sheeting).

Signal Phase Numbering Convention
Figures 4-22, 4-23, and 4-24 detail the phase and movement numbering convention. Signal heads shall be numbered to correspond with the phase number for that approach.
Even numbers are for through movements and odd numbers are for left turn movements.
Phase(s) 2 and 6 are for main line through movements while Phase(s) 4 and 8 are for side street through movements.
Phase(s) 1 and 5 are for mainline left turn phases while Phase 3 and 7 are for side street left turn phases.
Phase 2 shall generally be eastbound or southbound and the movements shall be numbered in a clockwise manner.
Phase(s) 2 and 6 are generally the coordinated phases in a signal system.
Figure 4-23
Example of Signal Head and Signal Phase Numbering

Figure 4-24
Typical Signal Head Displays
Phase Sequence Chart / Table of Operation Charting (Figure 4-25 and 4-26)
The Nema Phasing Chart is required on the signal plan. The SCDOT standard is to include the Table of Operation Chart on the signal plan; however, the Phase Sequence Chart may be used on the signal plan in lieu of the TOO Chart. The information shown within the TOO Chart and the Phase Sequence Chart is interchangeable. Figures 4-52 through 4-61 depict example Phase Sequence Charts and Table of Operation Charts (TOO) corresponding to the appropriate NEMA Phasing Chart.
The Signal Timing Chart is required on the signal plan. The SCDOT standard is to include timing setting for each phase including:
- Minimum Initial
- Vehicle Extention,
- Maximum Limit, Maximum Limit 2
- Yellow
- Red Clearance.

In addition, through Phases 2, 4, 6, and 8 may have:
- Walk and Don’t Walk timings for pedestrian movements

Volume Density Settings will generally be required for Phase 2 and 6 and may be required on certain high volume side streets for Phases 4 and 8. Volume Density settings include:
- Max initial
- added/ vehicle
- Time Before Reducing
- Time to reduce
- Minimum Gap

Signal settings are determined based on vehicle and pedestrian speeds, lane widths and markings, detection zone placement, roadway conditions such as grades and traffic volumes. Following is guidance on each setting.

1. **Actuated Signal Control** - A type of signal control where time for each phase is at least partially controlled by detector actuations.

2. **Call** - An indication within a controller that a vehicle or pedestrian is awaiting service from a particular phase or that a recall has been placed on the phase.

3. **Extend** - A detector parameter that increases the duration of a detector actuation by a defined fixed amount.

4. **Gap Out** - A type of actuated operation for a given phase where the phase terminates due to a lack of vehicle calls within a specific period of time (passage time).

5. **Interval** - The duration of time during which the indications do not change their state (active or off). Typically, one or more timing parameters control the duration of an interval. The pedestrian clearance interval is determined by the pedestrian clearance time. The green interval duration is controlled by a number of parameters including minimum time, maximum time, gap time, etc.

6. **Isolated intersection** - An intersection located outside the influence of and not coordinated with other signalized intersections, commonly one mile or more from other signalized intersections.

7. **Minimum Gap** - A volume density parameter that specifies the minimum green extension when gap reduction is used.

8. **Minimum Green** - A parameter that defines the shortest allowable duration of the green interval.

9. **Minimum Recall** - A parameter which results in a phase being called and timed for at least its minimum green time whether or not a vehicle is present.

10. **Movement** - Movements reflect the user perspective. Movements can also be broken down into classes (car, pedestrians, buses, LRT, etc.). Typical movements are left, through and right. Movement is an activity in response to a “go” (green ball, green arrow, walk, white vertical transit bar) indication.

11. **Max Out** - A type of actuated operation for a given phase where the phase terminates due to reaching the designated maximum green time for the phase.

12. **Passage Time** (Vehicle Interval, Gap, Passage Gap, Unit Extension) - A parameter that specifies the maximum allowable duration of time between vehicle calls on a phase before the phase is terminated.

13. **Pedestrian Clearance Interval** - Also generally known as “Flashing Don’t Walk” (FDW). An indication warning pedestrians that the walk indication has ended and the don’t walk indication will begin at the end of the pedestrian clearance interval. Some agencies consider the pedestrian clearance interval to consist of both the FDW time and the yellow change interval.

14. **Phase** - A timing unit associated with the control of one or more indications. A phase may be timed considering complex criteria for determination of sequence and the duration of intervals.

15. **Pre-timed control** - A signal control in which the cycle length, phase plan, and phase times are predetermined and fixed.

16. **Queue** - A line of vehicles, bicycles, or persons waiting to be served by a phase in which the flow rate from the front of the queue determines the average speed within the queue. Slowly moving vehicles or people joining the rear of the queue are usually considered part of the queue. The internal queue dynamics can involve starts and stops. A faster-moving line of vehicles is often referred to as a moving queue or a platoon.

17. **Recall** - A call is placed for a specified phase each time the controller is servicing a conflicting phase. This will ensure that the specified phase will be serviced again. Types of recall include soft, minimum, maximum, and pedestrian.

18. **Semi-Actuated Control** - A type of signal control where detection is provided for the minor movements only.

19. **Volume-Density** - A phase timing technique that uses a series of parameters (variable initial, minimum gap, time before reduction, time to reduce) to provide alternative, variable settings for the otherwise fixed parameters of minimum green and passage time.
Signal Timing Chart

Walk Setting

Walk Time - generally 4 to 7 seconds:
The minimum Walk time shown in MUTCD is 7 seconds, with a provision to reduce as low as 4 seconds if pedestrian volumes and characteristic do not require a 7 second walk interval. Walk times of 7 seconds or higher are typically considered when large groups of pedestrians are observed crossing at one interval. The larger walk time allows pedestrian to get into the intersection and still have sufficient time to cross the roadway. At locations where pedestrians are intermittent, walk times between 4 and 7 seconds are acceptable.

Pedestrian Clearance Setting

Don’t Walk Time - calculated based on crossing distance and walking speed
Pedestrian Clearance time is calculated based on a 3.5 feet per second walking time to cross from the edge of travel lane to the far side of the travel way or to a median of sufficient width to accommodate pedestrians. (See Figure 4-34)

When only pedestrian buttons are present, the walk time and pedestrian clearance time should equal the calculated crossing time, if the clearance time is served sequentially to the clearance interval. If the pedestrian clearance time encroaches into the clearance time, additional walk time should be provided.

For determining appropriate pedestrian treatments, see Pedestrian Treatment Design section within this chapter. Also, see MUTCD 4E-2 for additional guidance.

Minimum Initial, Maximum Initial, Vehicle Extension (also known as, Passage or Gap) Settings

Figures 4-29 and 4-30 should be used to determine these settings.

These settings are determined based on the placement of detection and vehicle approach speeds. Detection is placed based on approach speeds, traffic volumes and queues.

Typically detection on the main line is setback from the stop bar and detection on the side street is placed at the stop bar. The placement of this detection is intended to promote movement on the main line stopping only to serve side streets when vehicles are present. Since side street traffic is generally used to stopping at the main line, stop bar detection is sufficient.

When volumes on the side street are about equal to mainline volumes or when side street volumes may equal or exceed mainline volumes during particular times of the day. In these cases, detection on the side street can be placed set back from the stop bar or both at the stop bar and set back.
Other considerations for determining **Minimum Green** settings include providing sufficient time to accommodate pedestrian clearances in the absence of pedestrian button activation. The longer **Minimum Green** setting will be served each time the phase is activated either by vehicle detection or by placing the phase on recall. The benefit of increasing the **Minimum Green** setting is that pedestrians have sufficient time to cross without pushing the pedestrian button. The detriment is that the phase is served longer than necessary when pedestrians are not present, making the signal less efficient. Careful consideration to the effect on signal efficiency should be evaluated to determine the most appropriate setting. Setting **Minimum Green (Initial)** times based on the values in **Figure 4-29 and 4-30** and accommodating pedestrians by placing pedestrian buttons that will supply sufficient green time when activated is an accepted engineering practice.

<table>
<thead>
<tr>
<th>Speed (mph)</th>
<th>Rec</th>
<th>Setback (feet)</th>
<th>Equiv. Second</th>
<th>Min Initial</th>
<th>Max Initial</th>
<th>Passage</th>
<th>Min Gap</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>80</td>
<td>1.8</td>
<td>12</td>
<td>12</td>
<td>2.5</td>
<td></td>
<td></td>
<td>Low speeds - urban Detection is primarily to gap out signal. Loops are placed at 80' from the stop bar with a 2.5 second gap to extend</td>
</tr>
<tr>
<td>35</td>
<td>200</td>
<td>3.0</td>
<td>15</td>
<td>24</td>
<td>3.0</td>
<td>2.5</td>
<td></td>
<td>Urban and Suburban Arterials - Detection is primarily used to determine minimum green times and gap out signal. Detection will be placed to provide limited decision zone protection. Loops are placed at 4 - 5.5 seconds from the stop bar with a 2.5 second gap to extend vehicles through</td>
</tr>
<tr>
<td>40</td>
<td>300</td>
<td>5.1</td>
<td>15</td>
<td>34</td>
<td>6.0</td>
<td>2.5</td>
<td></td>
<td>High Speed Rural or Access Controlled Arterials - Detection is primarily used to determine minimum green times and gap out signal. Loops are placed at approximately 5.5 seconds from the stop bar with a 3 second gap to extend vehicles through decision zones.</td>
</tr>
<tr>
<td>45</td>
<td>330</td>
<td>5.0</td>
<td>15</td>
<td>37</td>
<td>6.0</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>370</td>
<td>5.0</td>
<td>15</td>
<td>41</td>
<td>6.0</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>445</td>
<td>5.5</td>
<td>15</td>
<td>49</td>
<td>6.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>485</td>
<td>5.5</td>
<td>15</td>
<td>53</td>
<td>6.0</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>45</td>
<td>255, 385</td>
<td>Varies (4-6)</td>
<td>15</td>
<td>Varies (30-42)</td>
<td>3.0 (since 2)</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Setback distances are approximate and may be adjusted based on presence of driveways or pavement types.

** Considered low speed - decision zone not an issue - volume density not used

** Settings for existing setback detection, consisting of 2 6'x6' loops per lane at 255' and 385'

Figure 4-29
Main line Detection Placement Chart w/ Signal Settings

<table>
<thead>
<tr>
<th>Speed (mph)</th>
<th>Rec</th>
<th>Setback (feet)</th>
<th>Equiv. Second</th>
<th>Min Initial</th>
<th>Max Initial</th>
<th>Passage</th>
<th>Min Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>@Stop Bar</td>
<td>n/a</td>
<td>Typically 4-8 seconds*</td>
<td>n/a</td>
<td>2-3</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

* Min Initial can be increased to accommodate pedestrian crossing time; however additional minimum green time can be obtained with pedestrian button activation.

Figure 4-30
SCDOT Stop Bar Detector Placement Chart
(Typically side streets and left turn lanes)
Maximum Green, Maximum Green 2 Settings

Maximum Green Times - calculated based on traffic volumes.

These values are the maximum green times per signal phase which determine signal cycle lengths. These settings should be calculated based on existing or projected traffic volumes, lane capacity, and phasing relationships as determined by widely accepted methods or engineering analysis. SCDOT often uses Synchro software to assist in determining Maximum Green settings. The Maximum Green setting is typically for normal traffic volumes, while Maximum Green 2 settings are for special times of day when increase traffic volumes are present.

See Chapter 5, in the FHWA Traffic Signal Timing Manual for Capacity and Critical Movement Analysis to determine critical movements and Maximum Green settings to serve each phase. Peak hour turning movement traffic counts performed in 15 minute intervals are required to determine the level of service and capacity, based on the signal settings. The counts should also include the number of heavy vehicles.

Since the maximum green times for each phase is only served when traffic volumes require it, engineers often use typical percent settings of the cycle length for main line and side streets, such as 60% mainline/40% side streets.

Volume - Density Settings

Volume - Density Timings should be utilized at all but the very simplest intersections (intersections with major route speed limits of 35 MPH or less do not typically benefit from this type of control.) Consider the use of Volume Density Timings for major approaches where the speed limit equals or exceeds 40 mph. Volume Density Timing will only operate if the loops are operational; therefore maintenance of the signal detection is an important consideration. Short gap (passage) times and long maximum green times provide best results.

Added Initial, Maximum Initial Settings

These settings allow a dynamic minimum (initial) green time to be calculated to ensure vehicles queuing at the stop bar are able to dissipate without additional loop activations. This is accomplished using the Added Initial, Maximum Initial inputs on the controller software.

Use the following Added Initial settings as guidance:

During side street phasing, vehicles arriving on the mainline roadway are ‘counted’. The number of vehicles counted is multiplied by the Added Initial setting resulting in a dynamic ‘initial green’ value, up to the Maximum Green setting. The Minimum Green time actually served is the greater of the Minimum Green setting or the dynamic ‘initial green’ value, not to exceed the Maximum Green Initial.

These values are approximate and engineering judgement should be used. When traffic is evenly distributed over multiple lanes, use lower number. Increase for high truck traffic.

<table>
<thead>
<tr>
<th>Approach Lanes</th>
<th>1 loop per lane</th>
<th>2 loops per lane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single through lane</td>
<td>2-3</td>
<td>1-1.5</td>
</tr>
<tr>
<td>Two through lanes</td>
<td>1.5-2.0</td>
<td>0.5-1.0</td>
</tr>
<tr>
<td>Three (or more) through lanes</td>
<td>1.0-1.5</td>
<td>0.5-0.7</td>
</tr>
</tbody>
</table>

Figure 4-31
Added Initial Settings
Calculation Example:

Added per Vehicle setting

= 2 seconds

with 10 counted on mainline while side street is green calculated dynamic initial green = 20 seconds

Minimum Initial setting

= 15 seconds

Maximum Initial Setting

= 25 seconds

Minimum Green time actually served

= 20 seconds

Minimum Gap Setting

Minimum Gap setting - generally 2.5 seconds.

Time Before Reduction Setting

Time Before Reduction - generally 10 to 15 seconds > Minimum Initial setting and 15 to 20 seconds < Maximum Green setting.

Time To Reduce Setting

Time to Reduce - generally 10 to 15 seconds

These settings allow the reduction of the gap (passage) to improve the efficiency of the intersection. Gap times need to be longer at the beginning of the green to allow vehicles to start up from a queued position and begin to pick up speed and increase the headway between them. At that point, the gap time can be reduced to obtain the most efficiency at the intersection. **Minimum Gap** is the gap time to be used to allow the most efficient operation of the signal, and is typically 2.5 seconds. Three inputs control this action, **Minimum Gap**, **Time before Reduction**, and **Time to Reduce**. Other settings to consider are Vehicle Extension, Minimum Green Timing and Maximum Green Timing.

Calculation Example:

Vehicle Extension setting

= 3.5 seconds

(if the Veh Ext time is 2.5 seconds, then there is no need to reduce it.)

Minimum Green

= 15 seconds

(In this example, 25 seconds into the mainline phase, the vehicle extension setting is reduced from 3.5 seconds to 2.5 seconds over a 10 second time frame)

Maximum Green

= 55 seconds

Minimum Gap setting

= 2 seconds

Time before reduction

= 25 seconds

(This value should be higher than the minimum green but less than the maximum green.)

Time to reduce

= 10 seconds

(This value is the amount of time the Veh Extension is reduce over; i.e., it would take 10 seconds to reduce 3.5 seconds to 2.5 seconds in this example)

Clearance Timings

Yellow, Red Settings

Clearance Timings shall be based on appropriate formulas that adhere to current professional standards. The clearance time consists of the yellow time and the all red time that separates phases. Clearance settings are calculated based on approach speed, approach grades, and intersection widths. As turning movement speeds are generally less than through movement speeds, accommodations or adjustments should be made to accommodate these speed variances. **Figures 4-32 and 4-33** are charts that depict yellow and red settings based on the ITE formulas. Items shown in grey are typical intersection values. Engineering judgment should be applied in calculating clearance time. In addition, **Figures 4-34, 4-35, and 4-36** are tools that should be used when designing signals. These figures are a great resource to assist in reviewing clearance calculations. **Figure 4-36** shows a depiction of an Excel Worksheet that is available to assist engineers in calculating clearance timings.
Yellow Calculation Chart

<table>
<thead>
<tr>
<th>Measured speed</th>
<th>20 mph</th>
<th>25 mph</th>
<th>30 mph</th>
<th>35 mph</th>
<th>40 mph</th>
<th>45 mph</th>
<th>50 mph</th>
<th>55 mph</th>
<th>60 mph</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>2.3</td>
<td>2.6</td>
<td>2.9</td>
<td>3.2</td>
<td>3.5</td>
<td>3.8</td>
<td>4.2</td>
<td>4.5</td>
<td>4.8</td>
</tr>
<tr>
<td>4%</td>
<td>2.3</td>
<td>2.6</td>
<td>2.9</td>
<td>3.3</td>
<td>3.6</td>
<td>3.9</td>
<td>4.2</td>
<td>4.6</td>
<td>4.9</td>
</tr>
<tr>
<td>3%</td>
<td>2.3</td>
<td>2.7</td>
<td>3.0</td>
<td>3.3</td>
<td>3.7</td>
<td>4.0</td>
<td>4.3</td>
<td>4.7</td>
<td>5.0</td>
</tr>
<tr>
<td>2%</td>
<td>2.4</td>
<td>2.7</td>
<td>3.1</td>
<td>3.4</td>
<td>3.8</td>
<td>4.1</td>
<td>4.4</td>
<td>4.8</td>
<td>5.1</td>
</tr>
<tr>
<td>1%</td>
<td>2.4</td>
<td>2.8</td>
<td>3.1</td>
<td>3.5</td>
<td>3.8</td>
<td>4.2</td>
<td>4.6</td>
<td>4.9</td>
<td>5.3</td>
</tr>
<tr>
<td>0%</td>
<td>2.5</td>
<td>2.8</td>
<td>3.2</td>
<td>3.6</td>
<td>3.9</td>
<td>4.3</td>
<td>4.7</td>
<td>5.0</td>
<td>5.4</td>
</tr>
<tr>
<td>-1%</td>
<td>2.5</td>
<td>2.9</td>
<td>3.3</td>
<td>3.7</td>
<td>4.0</td>
<td>4.4</td>
<td>4.8</td>
<td>5.2</td>
<td>5.5</td>
</tr>
<tr>
<td>-2%</td>
<td>2.6</td>
<td>3.0</td>
<td>3.4</td>
<td>3.7</td>
<td>4.1</td>
<td>4.5</td>
<td>4.9</td>
<td>5.3</td>
<td>5.7</td>
</tr>
<tr>
<td>-3%</td>
<td>2.6</td>
<td>3.0</td>
<td>3.4</td>
<td>3.8</td>
<td>4.2</td>
<td>4.7</td>
<td>5.1</td>
<td>5.5</td>
<td>5.9</td>
</tr>
<tr>
<td>-4%</td>
<td>2.7</td>
<td>3.1</td>
<td>3.5</td>
<td>3.9</td>
<td>4.4</td>
<td>4.8</td>
<td>5.2</td>
<td>5.6</td>
<td>6.0</td>
</tr>
<tr>
<td>-5%</td>
<td>2.7</td>
<td>3.2</td>
<td>3.6</td>
<td>4.1</td>
<td>4.5</td>
<td>4.9</td>
<td>5.3</td>
<td>5.8</td>
<td>6.2</td>
</tr>
</tbody>
</table>

Use a minimum yellow clearance of 3.0 seconds.
Mitigate yellows exceeding 6.0 seconds.
Calculated yellow times shown in grey from typical grades and speeds.

Red Calculation Chart

<table>
<thead>
<tr>
<th>Measured intersection clearance (W)</th>
<th>20 mph</th>
<th>25 mph</th>
<th>30 mph</th>
<th>35 mph</th>
<th>40 mph</th>
<th>45 mph</th>
<th>50 mph</th>
<th>55 mph</th>
<th>60 mph</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.4</td>
<td>1.1</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>30</td>
<td>1.7</td>
<td>1.4</td>
<td>1.1</td>
<td>1.0</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>40</td>
<td>2.0</td>
<td>1.6</td>
<td>1.4</td>
<td>1.2</td>
<td>1.0</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>50</td>
<td>2.4</td>
<td>1.9</td>
<td>1.6</td>
<td>1.4</td>
<td>1.2</td>
<td>1.1</td>
<td>1.0</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>60</td>
<td>2.7</td>
<td>2.2</td>
<td>1.8</td>
<td>1.6</td>
<td>1.4</td>
<td>1.2</td>
<td>1.1</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>70</td>
<td>3.1</td>
<td>2.5</td>
<td>2.0</td>
<td>1.8</td>
<td>1.5</td>
<td>1.4</td>
<td>1.2</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>80</td>
<td>3.4</td>
<td>2.7</td>
<td>2.3</td>
<td>1.9</td>
<td>1.7</td>
<td>1.5</td>
<td>1.4</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>90</td>
<td>3.8</td>
<td>3.0</td>
<td>2.5</td>
<td>2.1</td>
<td>1.9</td>
<td>1.7</td>
<td>1.5</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>100</td>
<td>4.1</td>
<td>3.3</td>
<td>2.7</td>
<td>2.3</td>
<td>2.0</td>
<td>1.8</td>
<td>1.6</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>110</td>
<td>4.4</td>
<td>3.5</td>
<td>3.0</td>
<td>2.5</td>
<td>2.2</td>
<td>2.0</td>
<td>1.8</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>120</td>
<td>4.8</td>
<td>3.8</td>
<td>3.2</td>
<td>2.7</td>
<td>2.4</td>
<td>2.1</td>
<td>1.9</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>130</td>
<td>5.1</td>
<td>4.1</td>
<td>3.4</td>
<td>2.9</td>
<td>2.6</td>
<td>2.3</td>
<td>2.0</td>
<td>1.9</td>
<td>1.7</td>
</tr>
<tr>
<td>140</td>
<td>5.5</td>
<td>4.4</td>
<td>3.6</td>
<td>3.1</td>
<td>2.7</td>
<td>2.4</td>
<td>2.2</td>
<td>2.0</td>
<td>1.8</td>
</tr>
<tr>
<td>150</td>
<td>5.8</td>
<td>4.6</td>
<td>3.9</td>
<td>3.3</td>
<td>2.9</td>
<td>2.6</td>
<td>2.3</td>
<td>2.1</td>
<td>1.9</td>
</tr>
<tr>
<td>160</td>
<td>6.1</td>
<td>4.9</td>
<td>4.1</td>
<td>3.5</td>
<td>3.1</td>
<td>2.7</td>
<td>2.5</td>
<td>2.2</td>
<td>2.0</td>
</tr>
<tr>
<td>170</td>
<td>6.5</td>
<td>5.2</td>
<td>4.3</td>
<td>3.7</td>
<td>3.2</td>
<td>2.9</td>
<td>2.6</td>
<td>2.4</td>
<td>2.2</td>
</tr>
<tr>
<td>180</td>
<td>6.8</td>
<td>5.5</td>
<td>4.5</td>
<td>3.9</td>
<td>3.4</td>
<td>3.0</td>
<td>2.7</td>
<td>2.5</td>
<td>2.3</td>
</tr>
<tr>
<td>190</td>
<td>7.2</td>
<td>5.7</td>
<td>4.8</td>
<td>4.1</td>
<td>3.6</td>
<td>3.2</td>
<td>2.9</td>
<td>2.6</td>
<td>2.4</td>
</tr>
<tr>
<td>200</td>
<td>7.5</td>
<td>6.0</td>
<td>5.0</td>
<td>4.3</td>
<td>3.8</td>
<td>3.3</td>
<td>3.0</td>
<td>2.7</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Use a minimum red clearance of 1.5 seconds.
Mitigate reds exceeding 3.0 seconds.
Calculated red times shown in grey from typical intersections and speeds.
Figure 4-34
Through Movement Clearance Distances

Figure 4-35
Left Turn Movement Clearance Distances
Figure 4-36

Clearance Time Calculation Sheet

The excel file has formulas embedded that provide mitigated values for yellow and red settings. Engineering judgement should be used when selecting the final yellow and red settings to accommodate speed variances.
Vehicle Detection

The Department uses mainly inductive loop detection; however other detection types include video detection, microwave Flush Mounted Wireless Detection, and radar type detection. Although Inductive loops are used at the majority of the signalized intersections around the state; however, these other technologies are widely acceptable.

Vehicle Detection Placement

- Side streets may also function as the major routes by time of day, however the side street typically has stop bar detection.
- If both the main line and side street have high speed and have similar volumes, setback vehicle detection may be used on both roadways.
- System detections are typically placed on the departure side of the signal, while vehicle detection is placed on the signal approach.
- Detection zones for inductive loops have a typical range of 3’ on either side of the loop; place loops to avoid detection from adjacent lane, or an opposing traffic flow area. The typical height of the inductive loop is 3’ for a square loop and 18-24” for a quadrupole loop. Adjusting the sensitivity of the loop can help if motorcycles or bikes are not being detected.
- Place vehicle detection driveways intersect, before or after intersecting driveways. Set back detection may be needed after high volume driveways to detect the vehicles exiting.

See SCDOT Standard Drawings and the SCDOT Supplemental Technical Specifications for more details.

Quadrupole loops - Quadrupoles are SCDOT’s standard for stop bar loop detection. Stop bar detection is typically used on side street approaches and on mainline left turn lanes. It is acceptable to place detection for the protected/permissive left turn phase up to 50’ back from the stop bar based on engineering judgement. For protected left-turn phasing, loops should be present at the stop bar.

Semi-Actuated Designs should only be utilized or considered when a signal is being included in a coordinated system. This type of design is not efficient during non-coordinated operation, as the main street never gaps out.

Numbering - Loop detectors should be numbered according to the phase with which they are associated. If there are multiple loops on one phase then add letter designations, according to their location, left to right and from front to back as shown in Figure 4-37.

Setback Detection should be used on major routes to operate volume density timings. The chart below shows appropriate setback distances based on the posted speed limit. The setback detection should be individual lane loops. Wireless detection may be considered as an alternate to standard inductive loops for setback loops.

Other Types of Vehicle Detection consist of video detection, wireless detection and radar detection. More information on these are shown later in this chapter.
6'X6' DETECTION ZONE
(per lane, setback distance based on approach speed)

6'X30' DETECTION ZONE
(per lane, at stop bar for side streets & left turn lanes)

INDICATES REQUIRED DETECTION ZONES

DETECTION ZONE NUMBERING CONFIGURATION
BY PHASE LOCATION,
LEFT TO RIGHT, FRONT TO BACK

<table>
<thead>
<tr>
<th>Speed (mph)</th>
<th>X=Setback (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>35</td>
<td>200</td>
</tr>
<tr>
<td>40</td>
<td>300</td>
</tr>
<tr>
<td>45</td>
<td>330</td>
</tr>
<tr>
<td>50</td>
<td>370</td>
</tr>
<tr>
<td>55</td>
<td>445</td>
</tr>
<tr>
<td>60</td>
<td>485</td>
</tr>
</tbody>
</table>

Figure 4-37
Vehicle Detection Numbering Configuration
VEHICLE DETECTION INSTALLATION CHART

<table>
<thead>
<tr>
<th>PHASE/LANE</th>
<th>DETECTOR</th>
<th>WIRED TO</th>
<th>LOCK</th>
<th>PULSE</th>
<th>NON-LOCK</th>
<th>PRE-S</th>
<th>OPERATION</th>
<th>TIME OF DAY-TOD</th>
<th>SPECIAL FEATURES</th>
<th>LOOP DESIGN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Figure 4-38
Vehicle Detection Chart

Figure 4-39
Typical Loop Placement
Vehicle Detection Chart Settings

Phase / Loop #
This column identifies the individual detection zone and is typically related to the phase the detection activates.

Detector - Amplifier Number, Channel Number
This column identifies the individual detection zone and is typically related to the phase the detection activates.

Wired to Phase(s)
This column what phase the detector activates

Lock, Non-Lock, Pulse, Presence
Lock, Non-lock are Detector Memory settings and indicate whether or not the detector should ‘remember’ the call placed by a vehicle, once the vehicle moves off the loop. Lock mode extends the time as the car rolls over the loop and non-lock does not. In non-lock, a vehicle must rest on the loop to be detected and as long as the car is on the loop a call is placed. If the car leaves the detection zone, the call is lost. Typically a loop on or near the stop bar would be in non-lock mode and the set back loops would be lock.

Pulse, Presence are Detector Mode settings. A detector can be set to ‘Presence’ or to ‘Pulse’ mode. SCDOT typically sets all detectors in Presence mode since Pulse mode would not recognize the ‘presence’ of a vehicle on the loop, as may occur during substantial queuing.

Operation - Delay, Extension (seconds)
Delay is a setting to be used if you wanted to place a delay on the loop for vehicle actuation. The typical use is for the right most stop bar loop on a side street. A delay would be placed on the loop to allow a motorist, making a right turn, to do so without placing a call on the controller, if the turn was made within the set delay. The typical delay is 8-10 seconds.

Special Features - Time of Day, Switching
These settings can be used to adjust settings by time of day.

Loop Design - Size, Number of Turns, Distance from Stop Bar

Size, Distance from Stop Bar: SCDOT standard size for stop bar detection is 6’ x 30, placed approximately 5’ in advance of the stop bar. This is shown at -5’ on chart. SCDOT standard size for set back detection is 6’x6’ per approach lane. Distances from stop bar are based on speeds as shown in Figure 4-10.

Number of Turns relates to the installation of inductive loops based on the size and desired sensitivity desired.

SCDOT Traffic Signal Technical Supplemental Specifications, SC-M-678-1 Detector Loops give standard number of turns for various loop sizes, however the engineer may change the number of turns to adjust sensitivity. In general, for 6’x30’ quadrupole loops, the number of turns is typically 2-4-2; for 6’x6’ loops, the number of turns is 4.

Vehicle Detection for Advanced Signal Systems

Advanced Signal Systems - For advanced signal systems (Traffic Responsive or Traffic Adaptive), additional detection is required to provide vehicle data for operation purposes. Adaptive signal systems typically require stop bar detection between 6’-10’ for each lane. Setback loops may also be required for volume data collection. Responsive signal systems typically require setback loops for volume data collection at points where volumes fluctuate. When determining loop placement for signal design, consider future signal system operations and install additional detection as necessary.
Figure 4-40
Typical Loop Placement for Responsive Signal System

Figure 4-41
Typical Loop Placement for Adaptive Signal System
Figure 4-42
Typical Video Detection Placement for Adaptive Signal System

Figure 4-43
Typical Wireless Detection Placement for Adaptive Signal System with Existing Inductive Loops
Video Detection

Video Detection may be installed at intersections where there are unusual pavement conditions (rutting), where there may be future lane reassignments, and during construction when lane shifts are present.

Environmental changes such as fog, rain, or snow can cause pixel changes in video detection causing the equipment to temporarily malfunction.

Video detection works best at locations with some lighting and lower approach speeds. The detection works best at the stop bar and is more effective if installed higher up to avoid occlusion (blocking from adjacent lanes). See Figure 4-47, Chapter 5 and SC-M-6788-3 for more information.

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Video Detection</th>
<th>Inductive loop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td>easy & quick</td>
<td>difficult & slow</td>
</tr>
<tr>
<td>Maintenance cost</td>
<td>low-medium</td>
<td>high</td>
</tr>
<tr>
<td># of detection zones</td>
<td>up to 8</td>
<td>1</td>
</tr>
<tr>
<td># of lanes detected</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>verification of detection</td>
<td>visual-cabinet software</td>
<td>field tested</td>
</tr>
</tbody>
</table>

Installation

Video Detection cameras are installed overhead at the intersection. Cable connecting the cameras to the cabinet must be installed. Single channel or dual channel processing units are installed in the cabinet. Each camera requires a channel. If installed on corner poles, cares should be taken to provide the best visibility to the desired detection zone. Video detection cameras installed on mast arms provide optimum visibility for the detection zone. Examples of video detection cameras represented on plans are below:
Flush Mounted Wireless Detection

Flush-mounted wireless detection can also be used for locations where gathering volume, speed and occupancy is desired, like at signal systems. These detectors are used just like inductive loops, however, they provide a more precise vehicle detection zone, without the variables of size and type that is normally attributed to typical loops. See Figure 4-47, Chapter 5 and SC-M-678-2 for more information.

Advantages
The in-ground wireless detectors/sensors install in minutes. They are operational in a matter of hours, at which point they begin transmitting accurate, real-time detection data to Traffic Management Centers, signal controllers, and traveler information systems.

Installation is fast and simple, minimizing road closures and worker exposure, and greatly reducing operating and maintenance spending.
- In-pavement installation with no wires or lead-in cabling
- 10-year battery life
- Impervious to weather
- Rapid installation and deployment reduces road closures and worker exposure
- Re-usable and remotely upgradeable
- Easily deployed in complex configurations
- Capable of over 300 million detections
- RR detection - without requirement of conduit under track to connect to signal cabinet.

Disadvantages
- Expensive for using less than 10 detectors per signal due to equipment in cabinet and overhead receivers/antennas/repeaters.
- During resurfacing projects, sensors can be milled up and lost; if removed prior to milling, the detectors must be marked properly for re-use in the proper lane.

Installation
Antennas, receivers are installed on poles at the intersection, generally on the cabinet pole. If the wireless detection system utilizes repeaters, these are installed at setback detection distances on poles. Some local governments use 15’ pedestrian poles to mount the repeaters. An example of wireless detection sensor represented on plans is on the right.
FLUSH MOUNTED WIRELESS DETECTION

Wireless Sensors

Cabinet Controller Interface

Receiver

Wireless Detection Antenna

Repeater
Recommended sensor spacing to emulate 20' loop

One sensor is equivalent to a 6' x 6' loop, and if a larger detection zone is desired, multiple sensors can be used to equate the larger zone.

Uses for wireless detection:
- Stop bar detection
- Advance detection
- System counts
- Adaptive control
Below are the 3 typical types of detection, Inductive loop detection, Video Detection and Wireless Detection; in addition, the pay item information, cost estimate and quantity calculation information:

<table>
<thead>
<tr>
<th>67B.1 Detector Loop</th>
<th>How to calculate quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>6770413 LF $20.42 Furnish and Install No. 14 Copper Wire, 3 Conductor for Loop Wire</td>
<td>6' x 6' loop = 100 LF x double the distance to splice box.</td>
</tr>
<tr>
<td>6770495 LF $6.10 Sawcut for Loop Detector</td>
<td>6' x 30' quadruple = 175 LF x double the dis. to splice box.</td>
</tr>
</tbody>
</table>

If new loops cannot be reconnected in existing junction boxes, the below pay items may be needed:

6770275 LF $7.25 Furnish & Install 1 1/2" Schedule 30 PVC Conduit	Consult measured from edge of pavement to splice box, and between splice boxes if needed, to the signal cabinet.
6770277 LF $8.25 Furnish & Install 2 1/2" Schedule 30 PVC Conduit	
6770389 LF $2.05 Furnish & Install No. 14 Copper Wire, 4 Conductor (Gray)	Electrical cable to connect loop wire from splice box to the signal cabinet.
6770279 LF $2.20 Furnish & Install No. 14 Copper Wire, 8 Conductor (Gray)	
6800518 EA $395 Furnish and Install 13' x 24' x 18' D.E. Flux Unigrid Enclosure (STL POLY COM)	Splice box placed adjacent to the loop off the roadway, as needed.

<table>
<thead>
<tr>
<th>67B.2 Wireless Detection</th>
<th>How to calculate quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>677049C EA $8,342 Furnish Wireless Detection System W/5 Sensors</td>
<td>Includes all needed equipment, materials, hardware, cable, mounting equipment in both the signal cabinet and overhead mower/steers to provide system that can detect as indicated in pay item.</td>
</tr>
<tr>
<td>677049D EA $9,744 Furnish Wireless Detection System W/5 Sensors</td>
<td>Need 1 of the appropriate systems per signal.</td>
</tr>
<tr>
<td>677049E EA $10,887 Furnish Wireless Detection System W/5 Sensors</td>
<td>Most signals require setback detection for 2 approaches for permanent installation; for detection during construction, typically only need detection at stop bar.</td>
</tr>
<tr>
<td>677049F EA $5,477 Furnish Wireless Detection System W/5 Sensors w/ Setback Detection Capability</td>
<td></td>
</tr>
<tr>
<td>677049G HR $510 Furnish Manufacturer Technician Assistance</td>
<td>Recommended to ensure appropriate installation of detectors and programming of detection zone @ signal controller; Recommend a minimum of 8 hours per 3 signals.</td>
</tr>
<tr>
<td>677049H EA $595 Furnish & Install Flush Mounted Wireless Sensor Inc. Epoxy</td>
<td>Includes sensor and all hardware, materials and equipment required for installation (including epoxy).</td>
</tr>
<tr>
<td>677049I EA $590 Remove & Replace Wireless Sensor W/New Housing</td>
<td>Need 1 per wireless detector (sensor).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>68B.3 Video Detection - Loop Emulation System</th>
<th>How to calculate quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>688040 EA $5,600 Furnish & Install Video Detection System W/ Hardware & Lead-in</td>
<td>Includes cabinet, equipment, 1 video detection camera, all necessary hardware for mounting and cable for installation. Need 1 per signal if video detection system is not existing as signal.</td>
</tr>
<tr>
<td>688041 EA $575 Install Video Detection System</td>
<td>If contractor owns cameras or if District provides cameras, need 2 per approach where detection is required.</td>
</tr>
<tr>
<td>688042 EA $2,500 Furnish & Install Add'l Cameras W/ Hardware & Lead-in</td>
<td>Includes 1 video detection camera and all necessary hardware for mounting and cable for installation. Need 3 camera per approach where detection is required, minus the camera provided with the video detection system 688040.</td>
</tr>
</tbody>
</table>
Radar Detection

Although radar detection technology has been around for years, SCDOT has just started utilizing it as an option for vehicle detection. An advantage of radar detection is the fact that it can be installed on signal support poles and can detect vehicles in all approach lanes without occlusion. Another advantage of radar detection is that lighting and weather conditions do not adversely affect the radar.

There are three types of radar detection available:

Stop bar detection
A radar is installed overhead on each corner to detect vehicles at the stop bar. Depending on the installation one radar may be able to detect two approaches.

Setback detection
On mainline approaches, radars can be installed to detect both the stopbar and setback detection zones.

Side mounted detection (for counting by lanes)
Side mounted detection is typically used along interstates as permanent count equipment. Maintenance of this equipment is easier than traditional in lane detection, as maintenance personnel do not have to be in the roadway.
Traffic Signal Letting Package

The Traffic Signal Letting Package includes the following:

- SCDOT Construction Contract Boiler Plate (provided by SCDOT Letting Preparation Office)
 - Length of contract (to be determined by Traffic Signal Project Manager)
- Traffic Signal Design Plans - Designed in accordance with Chapter 4, Signal Design
- Cover Sheet including Table of Contents and Location map
- Quantity Sheet including Pay Items, Estimated Quantities, Cost Estimate - Common pay items for signals are included in the Traffic Signal Supplemental Technical Specifications. Additional pay items for signals are located in the SCDOT pay item list - 6750000-6990000.
- Specifications -
 - Special Provisions for Traffic Signals
 - Schedule - does contractor set schedule or does SCDOT issue work orders assigning which signals are improved
 - List of signals and general description of work
 - Differences from Supplemental Technical Specifications....
- Special Provisions for Traffic Control,
- Special Provisions for Railroad ,
- Traffic Signal Supplemental Technical Specifications - FHWA approved the Traffic Signal Supplemental Technical Specifications, latest revision and are automatically included in all SCDOT lettings.
- Any other specification for specialized signal equipment or software applicable to the project, but not included in the Supplemental Technical Specifications
- SCDOT also has Standard Drawings for Signal Construction that are applicable for all SCDOT projects.

Letting packages are submitted to the Pre-Construction Support group at SCDOT. Pay item quantities are entered into P2S. Engineering estimates are submitted to the Pre-Construction Support group at SCDOT.

In addition, the following certifications must also be provided, in coordination with other offices

- Utility Certification
- Railroad Certification (if applicable)
- Right of Way Certification
- Environmental Permit

Design Build Signal Scope

Design Build Projects are advertised in a Request for Proposal (RFP) and SCDOT selects a team consisting of Engineering firms and General Contractors. This team prepares a proposal based on a scope of work prepared by SCDOT. A comprehensive scope of work for signals included in the project should include specific requirements for signal design. Below are some common elements that should be addressed in the scope of work:

Does SCDOT want an advanced signal system installed at the signals?
- If so, the scope of work should detail what system is required and what this will generally entail; installation or upgrades to signal equipment, software, detection (type), traffic monitoring devices (monitoring cameras, origin-destination devices), communications (fiber, wireless radios, Ethernet switches, cell modems, Point of Presence)

Do the signal(s) have communications?
- If so, communications must be maintained operational during the life of the project.
- Will the signal communications need to be updated to latest SCDOT standards or improved to addressed advanced technologies

If the signal(s) don't have communications, do the signal(s) need it?
- If so, specify the type of communications needed.
Will the project impact any of the signal structures (signal support poles, signal cabinet)?
- If so, at what point should the signal be rebuilt - generally if the cabinet signal pole or signal cabinet is impacted, the signal should be entirely rebuilt including all new signal span wire, electrical cable, signal heads, pedestrian treatments and signal cabinet and foundation.
- Specify if signal poles should be replaced and by what type (steel poles, concrete poles or mast arms)
- Specify if joint use pole attachments are permissible.

Will the project impact any of the detection?
- If so, is temporary detection required?
- If so, what type of detection should be installed to replace the detection?

Should the signal(s) be retimed to improve coordination?

Should the existing signals be studied to determine if phasing changes are warranted?

A statement about SCDOT provided equipment should be included, listing the type of equipment and indicating that the cost of equipment should be covered by the project charge codes. Generally this is equipment specified under SCDOT's Public Interest Finding (see Chapter 2). This generally includes adaptive software licenses, network devices such as Ethernet switches, wireless radios, cell modems, and traffic monitoring cameras.

A general statement in the scope should include that the signal design should comply to SCDOT Signal Standards, including this SCDOT Signal Manual, SCDOT Signal Specifications, and SCDOT Standard Drawings. Any variances should be submitted to SCDOT Traffic Engineers with a justification for variance.
TYPICAL SCDOT TRAFFIC SIGNAL PAY ITEMS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>IDESCRL</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1031000</td>
<td>MOBILIZATION</td>
<td>LS</td>
</tr>
<tr>
<td>1031010</td>
<td>MOBILIZATION</td>
<td>EA</td>
</tr>
<tr>
<td>1071000</td>
<td>TRAFFIC CONTROL</td>
<td>LS</td>
</tr>
<tr>
<td>1071100</td>
<td>TRAFFIC CONTROL</td>
<td>EA</td>
</tr>
<tr>
<td>6885992</td>
<td>TEMPORARY ADJUSTMENT OF TRAFFIC SIGNAL EQUIPMENT</td>
<td>LS</td>
</tr>
<tr>
<td>CONDUIT PAY ITEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6750005</td>
<td>FURNISH & INSTALL 1.0" GALVANIZED RIGID CONDUIT</td>
<td>LF</td>
</tr>
<tr>
<td>6750015</td>
<td>FURNISH & INSTALL 2.0" GALVANIZED RIGID CONDUIT</td>
<td>LF</td>
</tr>
<tr>
<td>6750275</td>
<td>FURNISH & INSTALL 1.0" SCHEDULE 80 PVC CONDUIT</td>
<td>LF</td>
</tr>
<tr>
<td>6750278</td>
<td>FURNISH & INSTALL 2.0" SCHEDULE 80 PVC CONDUIT</td>
<td>LF</td>
</tr>
<tr>
<td>675027C</td>
<td>FURNISH & INSTALL 3.0" SCHEDULE 80 PVC CONDUIT</td>
<td>LF</td>
</tr>
<tr>
<td>675027S</td>
<td>FURNISH & INSTALL 2.0" SCHD 80 PVC CONDUIT (DIRECTION BORED)</td>
<td>LF</td>
</tr>
<tr>
<td>675027V</td>
<td>FURNISH & INSTALL 3.0" SCHD 80 PVC CONDUIT (DIRECTION BORED)</td>
<td>LF</td>
</tr>
<tr>
<td>ELECTRIC CABLE PAY ITEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6770388</td>
<td>FURNISH & INSTALL NO. 14 COPPER WIRE, 4 CONDUCTOR - BLACK</td>
<td>LF</td>
</tr>
<tr>
<td>6770389</td>
<td>FURNISH & INSTALL NO. 14 COPPER WIRE, 4 CONDUCTOR - GRAY</td>
<td>LF</td>
</tr>
<tr>
<td>6770393</td>
<td>FURNISH & INSTALL NO. 14 COPPER WIRE, 8 CONDUCTOR (BLACK)</td>
<td>LF</td>
</tr>
<tr>
<td>6770394</td>
<td>FURNISH & INSTALL NO. 14 COPPER WIRE, 8 CONDUCTOR (GRAY)</td>
<td>LF</td>
</tr>
<tr>
<td>FIBER & COMMUNICATIONS PAY ITEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6770470</td>
<td>FURNISH & INSTALL FIBER OPTIC CABLE - SINGLE MODE</td>
<td>LF</td>
</tr>
<tr>
<td>6770476</td>
<td>FURNISH & INSTALL FIBER OPTIC INTERCONNECT CENTER</td>
<td>EA</td>
</tr>
<tr>
<td>6888082</td>
<td>FURNISH & INSTALL FACTORY TERMINATED PATCH PANEL</td>
<td>EA</td>
</tr>
<tr>
<td>677048B</td>
<td>INSTALL WIRELESS NETWORK COMMUNICATIONS LINK BTWN TWO SIGNALS</td>
<td>EA</td>
</tr>
<tr>
<td>DETECTION PAY ITEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6770413</td>
<td>FURNISH & INSTL NO. 14 COPPER WIRE, 1-CONDUCTOR FOR LOOP WIRE</td>
<td>LF</td>
</tr>
<tr>
<td>6780495</td>
<td>SAWCUT FOR LOOP DETECTOR</td>
<td>LF</td>
</tr>
<tr>
<td>6886040</td>
<td>F&I - VIDEO DETECTION SYSTEM W/ONE CAMERA, HARDWARE & Lead-In</td>
<td>EA</td>
</tr>
<tr>
<td>6886042</td>
<td>F&I VIDEO DETECTION CAMERA W/ HARDWARE & Lead-In</td>
<td>EA</td>
</tr>
<tr>
<td>6770494</td>
<td>F&I WIRELESS DETECTOR</td>
<td>EA</td>
</tr>
<tr>
<td>677049C</td>
<td>F&I WIRELESS DETECTION SYSTEM W/O SENSORS (INC SET BACK DETECTION CAPABILITY FOR 2 APPROACHES)</td>
<td>EA</td>
</tr>
<tr>
<td>677049D</td>
<td>F&I WIRELESS DETECTION SYSTEM W/O SENSORS (INC SET BACK DETECTION CAPABILITY FOR 3 APPROACHES)</td>
<td>EA</td>
</tr>
<tr>
<td>677049E</td>
<td>F&I WIRELESS DETECTION SYSTEM W/O SENSORS (INC SET BACK DETECTION CAPABILITY FOR 4 APPROACHES)</td>
<td>EA</td>
</tr>
<tr>
<td>677049F</td>
<td>F&I WIRELESS DETECTION SYSTEM W/O SENSORS (W/O SET BACK DETECTION CAPABILITY)</td>
<td>EA</td>
</tr>
</tbody>
</table>
ELECTRIC SERVICE PAY ITEMS

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6800499</td>
<td>Furnish & Install Electrical Service for Traffic Signal</td>
<td>EA</td>
</tr>
<tr>
<td>6800500</td>
<td>Mod. Exist Electrical Service for Traffic Signal</td>
<td>EA</td>
</tr>
</tbody>
</table>

SPLICE BOX PAY ITEMS

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>680508</td>
<td>F & I - 12" X 12" D. Elec. Flush Undgrd. Enclos - (Str. Poly. Conc.) HD</td>
<td>EA</td>
</tr>
<tr>
<td>680518</td>
<td>F & I - 13" X 24" X 18" D. Elec. Flush Undgrd. Enclos - (Str. Poly. Conc.) HD</td>
<td>EA</td>
</tr>
</tbody>
</table>

SIGNAL SUPPORT POLE PAY ITEMS

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6825020</td>
<td>Furnish & Install - 35' Wood Pole-Class II-CCA TR (0.60)</td>
<td>EA</td>
</tr>
<tr>
<td>6825045</td>
<td>Furnish & Install 3/8" Back Guy for Wood Pole</td>
<td>EA</td>
</tr>
<tr>
<td>6825046</td>
<td>Furnish & Install 3/8" Sidewalk Guy</td>
<td>EA</td>
</tr>
<tr>
<td>6825050</td>
<td>F & I 13" X 26' Steel Strain Pole-Powder Coated with Foundation</td>
<td>EA</td>
</tr>
<tr>
<td>6825051</td>
<td>F & I 13 X 28' Steel Strain Pole-Powder Coated and Foundation</td>
<td>EA</td>
</tr>
<tr>
<td>6825052</td>
<td>F & I 13" X 32' Steel Strain Pole-Powder Coated and Foundation</td>
<td>EA</td>
</tr>
<tr>
<td>682505B</td>
<td>F & I 13" X 28' Steel Strain Pole & Foundation</td>
<td>EA</td>
</tr>
<tr>
<td>682505D</td>
<td>F & I 13" X 32' Steel Strain Pole & Foundation</td>
<td>EA</td>
</tr>
<tr>
<td>6825061</td>
<td>Furnish & Install 35' Concrete Strain Pole</td>
<td>EA</td>
</tr>
<tr>
<td>6825062</td>
<td>Furnish & Install 40' Concrete Strain Pole</td>
<td>EA</td>
</tr>
<tr>
<td>6825064</td>
<td>Furnish & Install 45' Concrete Strain Pole</td>
<td>EA</td>
</tr>
<tr>
<td>6825090</td>
<td>Furnish & Install 1/4" Galvanized Steel Cable</td>
<td>LF</td>
</tr>
<tr>
<td>6825092</td>
<td>Furnish & Install 3/8" Galvanized Steel Cable</td>
<td>LF</td>
</tr>
</tbody>
</table>

MAST ARM PAY ITEMS

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6888166</td>
<td>Powdercoating Per Mast Arm Over Base</td>
<td>EA</td>
</tr>
<tr>
<td>6888168</td>
<td>Decorative Option Per Mast Arm</td>
<td>EA</td>
</tr>
<tr>
<td>6888169</td>
<td>Luminaire Option for Mast Arm - To Account for Taller Pole</td>
<td>EA</td>
</tr>
<tr>
<td>6888177</td>
<td>Design, Furnish & Install Steel Pole with Twin Mast Arms Including Foundation</td>
<td>EA</td>
</tr>
<tr>
<td>6888179</td>
<td>Design, Furnish & Install Steel Pole with Mast Arm Including Foundation</td>
<td>EA</td>
</tr>
</tbody>
</table>

PEDESTRIAN PAY ITEMS

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6825480</td>
<td>Furnish & Install 4' Break-Away Aluminum Pedestal Pole</td>
<td>EA</td>
</tr>
<tr>
<td>6825484</td>
<td>Furnish & Install 10' Break-Away Alum Pedestal Pole and Base</td>
<td>EA</td>
</tr>
<tr>
<td>6888192</td>
<td>Powdercoating Option for 4' Aluminum Pedestal Pole</td>
<td>EA</td>
</tr>
<tr>
<td>6888194</td>
<td>Powdercoating Option for 10' Aluminum Pedestal Pole</td>
<td>EA</td>
</tr>
<tr>
<td>6865782</td>
<td>F & I Pedestrian Signal Head</td>
<td>EA</td>
</tr>
<tr>
<td>6865783</td>
<td>F & I Countdown Pedestrian Signal Head</td>
<td>EA</td>
</tr>
<tr>
<td>6865794</td>
<td>F & I-Ped Push Button Micro Assembly (9"X15") And Sign (R-10-3E)</td>
<td>EA</td>
</tr>
<tr>
<td>6865795</td>
<td>Furnish & Install-Pedestrian Push Button Microswitch Type</td>
<td>EA</td>
</tr>
<tr>
<td>6865797</td>
<td>F & I Ped Pushbutton Solid State W/Light & Tone Station Assembly (9X15) And Sign (R10-3E)</td>
<td>EA</td>
</tr>
</tbody>
</table>
CABINET PAY ITEMS

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6845510</td>
<td>F&I - CONTR 332/336 CABINET ASSEMBLY - POLE MOUNTED</td>
<td>EA</td>
</tr>
<tr>
<td>6845511</td>
<td>F&I - CONTR 332/336 CABINET ASSEMBLY - BASE MOUNTED</td>
<td>EA</td>
</tr>
<tr>
<td>6845520</td>
<td>FURNISH & INSTALL 2070L CONTROLLER UNIT IN EXISTING CABINET</td>
<td>EA</td>
</tr>
<tr>
<td>6845655</td>
<td>FURNISH & INSTALL SPLICE-CABINET/FLASHER CABINET</td>
<td>EA</td>
</tr>
<tr>
<td>6887951</td>
<td>FURNISH & INSTALL CONCRETE CABINET FOUNDATION</td>
<td>EA</td>
</tr>
</tbody>
</table>

SOLAR FLASHERS

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6865700</td>
<td>F&I SOLAR POWERED FLASHER ASSEMBLY - SINGLE BEACON</td>
<td>EA</td>
</tr>
<tr>
<td>6865701</td>
<td>F&I SOLAR POWERED FLASHER ASSEMBLY - DUAL BEACON</td>
<td>EA</td>
</tr>
</tbody>
</table>

SIGNAL HEAD PAY ITEMS

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6865710</td>
<td>F&I 12" 5 SECTION SIGNAL HEAD</td>
<td>EA</td>
</tr>
<tr>
<td>6865720</td>
<td>F&I 12" 4 SECTION SIGNAL HEAD</td>
<td>EA</td>
</tr>
<tr>
<td>6865723</td>
<td>F&I - 12" 3 SECTION SIGNAL HEAD</td>
<td>EA</td>
</tr>
<tr>
<td>6865834</td>
<td>BACKPLATE W/ RETROREFL. BORDERS FOR TRAFF. SIG.</td>
<td>EA</td>
</tr>
</tbody>
</table>

REMOVE AND SALVAGE PAY ITEMS

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6885982</td>
<td>REMOVE FOUNDATION OF STEEL STRAIN POLE - 18" BELOW GRADE</td>
<td>LS</td>
</tr>
<tr>
<td>6885990</td>
<td>REMOVAL, SALVAGE, & DISP. OF EXISTING TRAF. SIGNAL EQUIPMENT</td>
<td>LS</td>
</tr>
<tr>
<td>6885991</td>
<td>REMOVAL, SALVAGE, & DISP. OF EXISTING TRAF. SIGNAL EQUIPMENT</td>
<td>EA</td>
</tr>
</tbody>
</table>

The pay items listed below are the ones most commonly used on JSCDOT traffic signal plans. These items should cover at least 80% of traffic signal plans. If additional or speciality items are to be included, please contact SCDOT Traffic Signals for correct pay item number and description.

Figure 4-48c

Typical Traffic Signal Pay Items (page 3)
TYPICAL SIGNAL COSTS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>APPROXIMATE COST/SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Installs</td>
<td></td>
</tr>
<tr>
<td>• Steel pole and span wire</td>
<td>$80,000</td>
</tr>
<tr>
<td>• Mast arms</td>
<td>$130,000</td>
</tr>
<tr>
<td>Rebuilds</td>
<td></td>
</tr>
<tr>
<td>• Full (including poles)</td>
<td>$80,000</td>
</tr>
<tr>
<td>• Detection only</td>
<td>$10,000</td>
</tr>
<tr>
<td>• Signal heads/cable</td>
<td>$15,000</td>
</tr>
<tr>
<td>• Pedestrian treatments (heads/buttons)</td>
<td>$12,000</td>
</tr>
<tr>
<td>• Cabinet Assembly</td>
<td>$12,000</td>
</tr>
<tr>
<td>• 4 steel poles/span wire</td>
<td>$15,000</td>
</tr>
<tr>
<td>• Conduit/splice boxes</td>
<td>$6,000</td>
</tr>
<tr>
<td>• Mobilization/Traffic Control</td>
<td>$10,000</td>
</tr>
<tr>
<td>Possible Additional Items</td>
<td></td>
</tr>
<tr>
<td>• Curb Ramps</td>
<td>$15,000</td>
</tr>
<tr>
<td>• Pavement Markings</td>
<td>$8,000</td>
</tr>
<tr>
<td>• Wireless Communications</td>
<td>$5,000</td>
</tr>
<tr>
<td>• Ethernet Equipment</td>
<td>$2,000</td>
</tr>
<tr>
<td>• Traffic Monitoring Cameras</td>
<td>$7,000</td>
</tr>
<tr>
<td>• Fiber Communications</td>
<td></td>
</tr>
<tr>
<td>overhead</td>
<td>$4.00/LF</td>
</tr>
<tr>
<td>underground</td>
<td>$18.00/LF</td>
</tr>
</tbody>
</table>

*Figure 4-49

Typical Traffic Signal Costs*
Figure 4-50 a
Example Signal Plan
Figure 4-50b
Example Signal Plan
Figure 4-50c
Example Signal Plan
Figure 4-50d
Example Signal Plan
Phase 1 FYA program only the following:

Turn run timer off in MM->1->7.
Set the IO parameters to USER mode with in MM->1->8->6.

```
I/O Parameters
C1-C11=ABC IO Mode: USER
   D Conn Mapping: NONE
   TxF Blu Map: DEFAULT
   Invert Rail Inputs: ON
   EYR Red Confirm: OFF
```

Initialize the IO map with MODE 0 in MM->1->8->9->3.

```
Initialize User I/O Maps
   Init ABC with: NONE
   Init D with: NONE
   Init 2A with: MODE 0
   Init TF BIUw with: NONE
```

In MM->1->8->9->2->5

<table>
<thead>
<tr>
<th>DEFAULT</th>
<th>CHANGE TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN FCN DESCRIPTION</td>
<td>FCN DESCRIPTION</td>
</tr>
<tr>
<td>2-8 49 CH1 Green</td>
<td>57 CH9 Green</td>
</tr>
<tr>
<td>5-1 37 CH13 Yellow</td>
<td>0 UNUSED</td>
</tr>
<tr>
<td>7-8 57 CH9 Green</td>
<td>37 CH13 Yellow</td>
</tr>
</tbody>
</table>

In MM->1->5->2 OL#-1

```
OVERLAP A-1

Ovr1p A-1 Ps. .................
  Included Ps 1 0 0 0 0 0 0 0
  Modifier Ps 2 0 0 0 0 0 0 0
Type: FYA-4 Grn: 0 Yel: 3.5 Red: 1.5
```

In MM->1->8->4.

*ONLY PROGRAM WHAT IS SOWN FOR CHANNEL 13

```
[Table: Channel 9..16]
Flash Red: X X X X
Flash Yel: X X
Flash Grn: .....
Inhibit Red Flash in
  Preempt: ....
Olap Ovrdf 0 0 0 1 2 3 4
```

* (Monitor settings FYA = 1-9, SSM OFF on PH 1 and if no PH 1 Concurrent strap PH 1 Yellow)

```
<table>
<thead>
<tr>
<th>Left Turn Arrow Gyr-Phase #</th>
<th>Overlap #</th>
<th>Left Turn Arrow-RED Controller Channel #</th>
<th>Left Turn Arrow-YELLOW Controller Channel #</th>
<th>Left Turn Arrow Flashing Yellow Channel #</th>
<th>Left Turn Arrow-GREEN Controller Channel #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A-1</td>
<td>9R</td>
<td>9Y</td>
<td>9G</td>
<td>1G</td>
</tr>
</tbody>
</table>
```

Turn run timer back on in MM->1->7 and cycle power.

Figure 4-51a

Guidance on Programming Phase 1 FYA
Figure 4-51b
Guidance on Programming Phase 3 FYA
Phase 5 FYA program only the following:

Turn run timer off in MM->1->7.
Set the I/O parameters to USER mode with in MM->1->8->6.

I/O Parameters
- C1-C11-ABC IO Mode: USER
- D Conn Mapping: NONE
- TLF BIU Map: DEFAULT
- Init Rail Inputs: ON
- EVP Pod Confirm: OFF

Initialize the I/O map with MODE 0 in MM->1->8->9->3.
- Initialize User I/O Map
- Init ABC with: NONE
- Init D with: NONE
- Init 2A with: MODE 0
- Init TF BIU with: NONE

In MM->1->8->9=2->5

<table>
<thead>
<tr>
<th>DEFAULT</th>
<th>CHANGE TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-8 53</td>
<td>CH5 Green</td>
</tr>
<tr>
<td>5-2 39</td>
<td>CH15 Yellow</td>
</tr>
<tr>
<td>6-8 59</td>
<td>CH11 Green</td>
</tr>
<tr>
<td></td>
<td>0 UNUSED</td>
</tr>
</tbody>
</table>

In MM->1->5->2 OLU -1

<table>
<thead>
<tr>
<th>Overlap C-3</th>
<th>Ps</th>
<th>Included P5</th>
<th>Modifier P5</th>
<th>Type: FYA-4 Grn: 0 Yel: 3.5 Red: 1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In MM->1->8->4.

*ONLY PROGRAM WHAT IS SOWN FOR CHANNEL 15

<table>
<thead>
<tr>
<th>Chan 9...10...11...12...13...14...15...16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash Red:</td>
</tr>
<tr>
<td>Flash Yel:</td>
</tr>
<tr>
<td>Flash Grn:</td>
</tr>
<tr>
<td>Inhibit Red Flash in:</td>
</tr>
<tr>
<td>Preempt:</td>
</tr>
<tr>
<td>Olap Ovrd 0 0 0 0 0 0 0 1 2 3 4</td>
</tr>
</tbody>
</table>

(Monitor settings FYA = 5-11, SSM OFF on PH 5 and if no PH 5 Concurrent strap PH 5 Yellow)

<table>
<thead>
<tr>
<th>Left Turn Arrow GYR-Phase #</th>
<th>Overlap #</th>
<th>Left Turn Arrow-RED Controller Channel #</th>
<th>Left Turn Arrow-YELLOW Controller Channel #</th>
<th>Left Turn Arrow Flashing Yellow Channel #</th>
<th>Left Turn Arrow-GREEN Controller Channel #</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>C-3</td>
<td>11R</td>
<td>11Y</td>
<td>11G</td>
<td>5G</td>
</tr>
</tbody>
</table>

Turn run timer back on in MM->1->7 and cycle power.

Figure 4-51c
Guidance on Programming Phase 5 FYA
Phase 7 FYA program only the following:

Turn run timer off in MM->1->7.
Set the I/O parameters to USER mode with in MM->1->8->6.

I/O Parameters

C1-C11-ABC I/O Mode: USER
D Conn Mapping: NONE
TSP Bit Map: DEFAULT
Invert Rail Inputs: ON
EVP Ped Confirm: OFF

Initialize the I/O map with MODE 0 in MM->1->8->9->3.

1. Initialize User I/O Map
2. Init ABC with: NONE
3. Init D with: NONE
4. Init 2A with: MODE 0
5. Init TF Blk with: NONE

In MM->1->8->9->2->5

DEFAULT **CHANGE TO**

3-8 55	CH7 Green	60	CH12 Green
5-4 40	CH16 Yellow	0	UNUSED
6-5 60	CH12 Green	40	CH16 Yellow

In MM->1->5->2 OL# 1

Overlap D-4	Pss.	Included Ps	7 0 0 0 0 0 0 0
Modifier Ps	0 0 0 0 0 0 0 0		
Type: FYA-4	Grn: 0 Yel: 3.5 Red: 1.5		

In MM->1->8->4.

*ONLY PROGRAM WHAT IS SOWN FOR CHANNEL 16

| < Chan: 9..10..11..12..13..14..15..16 |
| Flash Red |
| Flash Yel |
| Flash Grn |
| Inhibit Red Flash in Preempt |
| Olap Ovrd |

* (Monitor settings FYA = 7-12, SSM OFF on PH 7 and if no PH 7 Concurrent strap PH 7 Yellow)

<table>
<thead>
<tr>
<th>Left Turn Arrow Gyr-Phase #</th>
<th>Overlap #</th>
<th>Left Turn Arrow-RED Controller Channel #</th>
<th>Left Turn Arrow-YELLOW Controller Channel #</th>
<th>Left Turn Arrow Flashing Yellow Channel #</th>
<th>Left Turn Arrow-GREEN Controller Channel #</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>D-4</td>
<td>12R</td>
<td>12Y</td>
<td>12G</td>
<td>7G</td>
</tr>
</tbody>
</table>

Turn run timer back on in MM->1->7 and cycle power.

Figure 4-51d

Guidance on Programming Phase 7 FYA
Figure 4-52

2 Phase NEMA / Sequence Table of Operations Charts

<table>
<thead>
<tr>
<th>Phases (Y, R, G)</th>
<th>Signal Head #</th>
<th>Main Line 2</th>
<th>Main Line 2</th>
<th>Flashing Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1/4</td>
<td>1/2</td>
<td>Barrier</td>
</tr>
<tr>
<td>Y</td>
<td>2</td>
<td>R</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2F</td>
<td>G</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>4</td>
<td>R</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4F</td>
<td>R</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>6</td>
<td>R</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6F</td>
<td>G</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>8</td>
<td>R</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8F</td>
<td>G</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

When called and displayed, if flashing caution and manual flashing, then display flashing extended hand for the duration of the red extension. Count down pedestrian hand display the countdown of pedestrian (crossing) simultaneous adjacent to flashing extended hand display.

<table>
<thead>
<tr>
<th>TABLE OF OPERATION</th>
<th>PHASE IN OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGNAL HEAD #</td>
<td>2 + 6</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
</tr>
<tr>
<td>4</td>
<td>R</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
</tr>
<tr>
<td>8</td>
<td>R</td>
</tr>
<tr>
<td>2P</td>
<td>W</td>
</tr>
<tr>
<td>4P</td>
<td>DW</td>
</tr>
<tr>
<td>6P</td>
<td>W</td>
</tr>
<tr>
<td>8P</td>
<td>DW</td>
</tr>
<tr>
<td>4 + 8</td>
<td>R</td>
</tr>
<tr>
<td>2 + 6</td>
<td>Y</td>
</tr>
<tr>
<td>4 + 8</td>
<td>DW</td>
</tr>
<tr>
<td>4 + 8</td>
<td>DRK</td>
</tr>
<tr>
<td>4 + 8</td>
<td>W</td>
</tr>
<tr>
<td>4 + 8</td>
<td>DRK</td>
</tr>
<tr>
<td>4 + 8</td>
<td>W</td>
</tr>
<tr>
<td>4 + 8</td>
<td>DRK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLASH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
</tr>
<tr>
<td>DW</td>
</tr>
<tr>
<td>DRK</td>
</tr>
<tr>
<td>W</td>
</tr>
<tr>
<td>DRK</td>
</tr>
</tbody>
</table>
Figure 4-53

3 Phase NEMA / Sequence Table of Operations Charts - Protected/Permissive Left Turn Phase w/ FYA
NEMA PHASING

Figure 4-54
3 Phase NEMA / Sequence Table of Operations Charts - Protected/Permissive Left Turn Phase w/ FYA
NEMA Phasing

Figure 4-55

8 Phase NEMA / Sequence Table of Operations Charts - Protected/Permissive Left Turn Phase w/ FYA

TABLE OF OPERATION

<table>
<thead>
<tr>
<th>SIGNAL HEAD</th>
<th>1+5</th>
<th>1+6</th>
<th>2+5</th>
<th>2+6</th>
<th>3+7</th>
<th>3+8</th>
<th>4+7</th>
<th>4+8</th>
<th>FLASH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2F</td>
<td>GA</td>
<td>GA</td>
<td>FYA</td>
<td>FYA</td>
<td>RA</td>
<td>RA</td>
<td>RA</td>
<td>RA</td>
<td>FYA</td>
</tr>
<tr>
<td>2</td>
<td>R</td>
<td>R</td>
<td>G</td>
<td>G</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>3,4F</td>
<td>RA</td>
<td>RA</td>
<td>RA</td>
<td>RA</td>
<td>GA</td>
<td>G</td>
<td>FYA</td>
<td>FYA</td>
<td>FRA</td>
</tr>
<tr>
<td>4</td>
<td>R</td>
<td>R</td>
<td>RA</td>
<td>RA</td>
<td>GA</td>
<td>G</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>5,6F</td>
<td>R</td>
<td>R</td>
<td>G</td>
<td>G</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>Y</td>
</tr>
<tr>
<td>6</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>FRA</td>
<td>FRA</td>
<td>FRA</td>
</tr>
<tr>
<td>7,8F</td>
<td>RA</td>
<td>RA</td>
<td>RA</td>
<td>RA</td>
<td>RA</td>
<td>Y</td>
<td>FRA</td>
<td>FRA</td>
<td>FRA</td>
</tr>
<tr>
<td>8</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>FRA</td>
<td>FRA</td>
<td>FRA</td>
<td>FRA</td>
</tr>
<tr>
<td>2P</td>
<td>DW</td>
<td>DW</td>
<td>W</td>
<td>W</td>
<td>DW</td>
<td>DW</td>
<td>DW</td>
<td>DW</td>
<td>DRK</td>
</tr>
<tr>
<td>3P</td>
<td>DW</td>
<td>DW</td>
<td>W</td>
<td>W</td>
<td>DW</td>
<td>DW</td>
<td>DW</td>
<td>DW</td>
<td>DRK</td>
</tr>
<tr>
<td>4P</td>
<td>DW</td>
<td>DW</td>
<td>W</td>
<td>W</td>
<td>DW</td>
<td>DW</td>
<td>DW</td>
<td>DW</td>
<td>DRK</td>
</tr>
<tr>
<td>5P</td>
<td>DW</td>
<td>DW</td>
<td>W</td>
<td>W</td>
<td>DW</td>
<td>DW</td>
<td>DW</td>
<td>DW</td>
<td>DRK</td>
</tr>
<tr>
<td>6P</td>
<td>DW</td>
<td>DW</td>
<td>W</td>
<td>W</td>
<td>DW</td>
<td>DW</td>
<td>DW</td>
<td>DW</td>
<td>DRK</td>
</tr>
<tr>
<td>8P</td>
<td>DW</td>
<td>DW</td>
<td>W</td>
<td>W</td>
<td>DW</td>
<td>DW</td>
<td>DW</td>
<td>DW</td>
<td>DRK</td>
</tr>
</tbody>
</table>

TABLE OF OPERATION (continued)

- When called, displays red Flashing Arrow and turns off all signals: Then displays Flashing 'Upward' Hand for the duration of the phase. When Clearing (or Clearing Count down) is reached, it displays the 'countdown' indications (clearance, simultaneous and adjacent to the flashing 'Upward'Hand) display.
NEMA PHASING

Figure 4-56
8 Phase NEMA / Sequence Table of Operations Charts-Protected Only Left Turn Phases
NEMA PHASING

3 Phase NEMA / Sequence Table of Operations Charts-Split Phased Side Street

Table of Operation

<table>
<thead>
<tr>
<th>SIGNAL HEAD #</th>
<th>1+5</th>
<th>1+6</th>
<th>2+5</th>
<th>2+6</th>
<th>PHASE 4</th>
<th>PHASE 8</th>
<th>FLASH</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>G</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td>R</td>
<td>G,A</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4B</td>
<td>R</td>
<td>G</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>G</td>
<td>R</td>
<td>R</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8A</td>
<td>R</td>
<td>R</td>
<td>G,A</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8B</td>
<td>R</td>
<td>R</td>
<td>G</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2P</td>
<td>W</td>
<td>DW</td>
<td>DW</td>
<td>DRK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4P</td>
<td>DW</td>
<td>W</td>
<td>DW</td>
<td>DRK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6P</td>
<td>W</td>
<td>DW</td>
<td>DW</td>
<td>DRK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8P</td>
<td>DW</td>
<td>DW</td>
<td>W</td>
<td>DRK</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- "G" = Green
- "R" = Red
- "Y" = Yellow
- "W" = White
- "DW" = Dark Blue
- "DRK" = Deep Red
- "G,A" = Green Arrow
- "DW" = Dark Blue Arrow

Figure 4-57

3 Phase NEMA / Sequence Table of Operations Charts-Split Phased Side Street
Figure 4-58
8 Phase NEMA / Sequence Table of Operations Charts-Lead / Lag Protected Left Turn Phases
Figure 4-59
8 Phase NEMA / Sequence Table of Operations Charts-Lead / Lag Protected Left Turn Phases
NEMA PHASING

Figure 4-60

4 Phase NEMA / Sequence Table of Operations Charts-Complex Overlap
NEMA PHASING

Figure 4-61

8 Phase NEMA / Sequence Table of Operations Charts—Protected Permissive Left Turns w/ 5 section heads
Task 6 - Signal Design - Level 1 - 1-5 Intersection (per Intersection)

Task 7 - Signal Design - Level 1 - 6-10 Intersection (per Intersection)

Task 8 - Signal Design - Level 1 - 11+ Intersection (per Intersection)

Scope of Work: Preparation of traffic signal plans on an on-call basis. If CAD files are available, SCDOT will provide them to consultant. If not, consultant should develop base mapping from digitized hardcopy signal plans or existing aerial photography, GIS and/or field inventory. Although task order is per intersection, cost per intersection shall be categorized by systems with (0-5),(6-10) and (11+) intersections and level of design.

Level 1 Signal Design will be performed using count data and a capacity analysis that has already been completed and will be provided by the SCDOT. The designs will be prepared at a scale of 1"=30' and will include equipment placement, general and intersection specific notes, phasing diagrams, loop placement and isolated signal timings. It is assumed that all designs will be on strain poles and no geotechnical investigations will be required.

<table>
<thead>
<tr>
<th>#</th>
<th>Project Tasks</th>
<th>Task Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Management</td>
<td>Management of the project to conform to SCDOT requirements for monitoring and controlling the engineering budget, project schedule and invoicing procedures. Project management for all of the tasks detailed below including the submission of monthly invoices and progress reports. Designation of a Project Manager to serve as the primary contact for communications with SCDOT. Coordination of a Kick Off meeting with all parties to identify and review project issues, expectations, goals, and objectives for each task order.</td>
</tr>
<tr>
<td>2</td>
<td>Utility Coordination</td>
<td>The CONSULTANT will utilize information provided by SC B11 and visual observations during field reviews as well as information provided by the SCDOT to develop a list of utilities that may be affected by the project. The CONSULTANT will provide a list of affected utilities by intersection to the SCDOT as part of the submittal, including a list and location per signal [i.e. which quadrant or which side]. Assumptions: No SUE will be performed for this project; if needed, SCDOT will issue an additional work order for Utility Agreement services (see Task 12 for scope) including preliminary and final utility reports, collection of utility records, incorporation of approximate locations of any field locates provided by SC B11, utility relocation sheets, Utility Agreement Coordination, prior rights research and determining relocations required.</td>
</tr>
<tr>
<td>3</td>
<td>Right of Way Verification/Identification</td>
<td>The CONSULTANT will verify existing right of way at each of the intersections utilizing a combination of field reviews, the SCDOT’s online plan library, information received from the SCDOT, and property deeds research. The CONSULTANT will document the new right of way and/or permissions required for project construction on the design plans consistent with SCDOT guidelines and requirements. Where existing signal plans exist, the CONSULTANT will verify the right-of-way shown on the plans. Where existing signal plans do not exist, the CONSULTANT will develop base mapping to show the existing right-of-way. Where existing right-of-way documentation is not available, the CONSULTANT will work with the SCDOT to determine the most appropriate estimate of the existing right-of-way. Where existing right-of-way information is not readily available, the CONSULTANT will not be responsible for performing surveying to locate right-of-way. Where existing right-of-way information is not available from plats or SCDOT plans, and it appears obtaining additional r/o is necessary for signal upgrade, SCDOT may negotiate with consultant under new task order to develop right of way plans.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Field Review</td>
<td>The CONSULTANT shall visit each intersection with representatives of the SCDOT (if necessary) to discuss the project goals and objectives. As part of this field visit, the CONSULTANT will collect site specific information, take digital photos of the intersections and existing signal equipment, and field check copies of the existing signal plans.</td>
<td></td>
</tr>
<tr>
<td>Design & Plan Preparation of Signal Plan</td>
<td>The CONSULTANT will use aerial photography, GIS or existing signal plans to develop digital base mapping for the traffic signal designs. Utilizing digital base mapping, the CONSULTANT will prepare traffic signal design and plans for each intersection. Traffic signal plans shall be designed in accordance with the South Carolina Department of Transportation Traffic Signal Design Guidelines (latest edition), the Manual on Uniform Traffic Control Devices (2009 Edition), Standard Signal Specifications and Special Provisions (latest edition), SCDOT Standard Drawings, and SCDOT design specifications. Traffic signal plans shall also be designed in accordance with a detailed scope list for each intersection provided by SCDOT. All work is to be performed within existing right of way where possible. If additional right-of-way is needed, the CONSULTANT will make recommendations and coordinate with the SCDOT. The CONSULTANT will prepare a set of signal plans that identifies the location of signal poles, pedestrian poles, signal heads, pushbuttons and signs, sidewalk ramps and crosswalks, pull boxes, conduits, pavement markings, and loops vehicle detection. Phasing diagrams, pay items and quantities will also be provided by the CONSULTANT. The plans shall be plotted at a scale not smaller than 1" = 40'. Assumptions: The SCDOT will provide available CAD files for the intersections; The SCDOT will provide any available hardcopies of existing signal plans; The CONSULTANT will not be required to provide survey services.</td>
<td></td>
</tr>
<tr>
<td>Cost Estimate</td>
<td>The CONSULTANT will calculate quantities and cost estimates for each intersection, utilizing pay items provided by SCDOT. The CONSULTANT will develop an excel spreadsheet for each intersection to show quantities required and anticipated costs. Anticipated costs will be based on the cost estimate file provided by the SCDOT.</td>
<td></td>
</tr>
<tr>
<td>Title Sheet/Quantity Sheet</td>
<td>The CONSULTANT will provide a Title sheet and Quantity Sheet [if required] for the purposes of project letting. Once project bundling is determined, the CONSULTANT will summarize quantities by intersection and by bundle.</td>
<td></td>
</tr>
<tr>
<td>Specifications Package</td>
<td>The CONSULTANT will provide Special Provisions and any other project specific specifications for work included in project. Standard traffic signal specifications will be used. The CONSULTANT will enter project details into the standard traffic signal special provision once project bundling is determined. Supplemental Specifications, Material Specifications, Special Provisions for Traffic Control will be provided by the SCDOT.</td>
<td></td>
</tr>
<tr>
<td>Signal Plan Files</td>
<td>The CONSULTANT will ensure cad file and sealed pdf is loaded onto SCDOT signal inventory software.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-62b

Typical Traffic Signal Pay Items (page 2)
Task 9 - Signal Design - Level 2 - 1-5 Intersection (per Intersection)
Task 10 - Signal Design - Level 2 - 6-10 Intersection (per Intersection)
Task 11 - Signal Design - Level 2 - 11+ Intersection (per Intersection)

Scope of Work: Preparation of traffic signal plans on an on-call basis. If CAD files are available, SCDOT will provide them to the consultant. If not, the consultant should develop base mapping from digitized hardcopy signal plans or existing aerial photography, GIS and/or field inventory. Although task order is per intersection, cost per intersection shall be categorized by systems with (0-5) (6-10) and (11 plus) intersections and level of design.

Level 2 Signal Design: A signal design at this level will require the team to obtain additional traffic counts and complete a capacity analysis of the intersection. The designs will be prepared at a scale of 1"=30' and will include equipment placement, general and intersection specific notes, phasing diagrams, loop placement and isolated signal timings. It is assumed that all designs will be on strain poles and no geotechnical investigations will be required.

<table>
<thead>
<tr>
<th>#</th>
<th>Project Tasks</th>
<th>Task Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Management</td>
<td>Management of the project to conform to SCDOT requirements for monitoring and controlling the engineering budget, project schedule and invoicing procedures. Project management for all of the tasks detailed below including the submission of monthly invoices and progress reports. Designation of a Project Manager to serve as the primary contact for communications with SCDOT. Coordination of a Kick Off meeting with all parties to identify and review project issues, expectations, goals, and objectives for each task order.</td>
</tr>
<tr>
<td>2</td>
<td>Utility Coordination</td>
<td>The CONSULTANT will utilize information provided by SC 811 and visual observations during field reviews as well as information provided by the SCDOT to develop a list of utilities that may be affected by the project. The CONSULTANT will provide a list of affected utilities by intersection to the SCDOT as part of the submittal, including a list and location per signal (i.e. which quadrant or which side). Assumptions: No SUE will be performed for this project; if needed, SCDOT will issue an additional work order for Utility Agreement services (see Task 12 for scope) including preliminary and final utility reports, collection of utility records, incorporation of approximate locations of any field locates provided by SC 811, utility relocation sheets, Utility Agreement Coordination, prior rights research and determining relocations required.</td>
</tr>
<tr>
<td>3</td>
<td>Right of Way Verification/Identification</td>
<td>The CONSULTANT will verify existing right of way at each of the intersections utilizing a combination of field reviews, the SCDOT’s online plan library, information received from the SCDOT, and property deeds research. The CONSULTANT will document the new right of way and/or permissions required for project construction on the design plans consistent with SCDOT guidelines and requirements. Where existing signal plans exist, the CONSULTANT will verify the right-of-way shown on the plans. Where existing signal plans do not exist, the CONSULTANT will develop base mapping to show the existing right-of-way. Where existing right-of-way documentation is not available, the CONSULTANT will work with the SCDOT to determine the most appropriate estimate of the existing right-of-way. Where existing right-of-way information is not readily available, the CONSULTANT will not be responsible for performing surveying to locate right-of-way. Where existing right-of-way information is not available from plats or SCDOT plans, and it appears obtaining additional r/w is necessary for signal upgrade, SCDOT may negotiate with consultant under new task order to develop right of way plans.</td>
</tr>
</tbody>
</table>

Figure 4-63a

Signal Design Scope of Services and Task Descriptions (page 1)
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Field Review</td>
<td>The CONSULTANT shall visit each intersection with representatives of the SCDOT (if necessary) to discuss the project goals and objectives. As part of this field visit, the CONSULTANT will collect site specific information, take digital photos of the intersections and existing signal equipment, and field check copies of the existing signal plans.</td>
</tr>
<tr>
<td>5</td>
<td>Data Collection – Traffic Counts</td>
<td>The CONSULTANT will conduct turning movement counts at each intersection for selected peak periods (up to four). The type of count data collected (vehicle, trucks/buses, and pedestrians) and duration of peak periods will be coordinated with the SCDOT prior to obtaining counts.</td>
</tr>
<tr>
<td>6</td>
<td>Capacity Analysis</td>
<td>The CONSULTANT will utilize Synchro to model peak periods, as determined in coordination with the SCDOT, to determine the recommended phasing and timings. This will include modeling existing conditions and recommended improvements. The recommended improvements will be modeled based on a projected horizon year and growth rate coordinated with the SCDOT. The capacity analysis results will be provided to the SCDOT as part of the design submittal.</td>
</tr>
<tr>
<td>7</td>
<td>Design & Plan Preparation of Signal Plan</td>
<td>The CONSULTANT will use aerial photography, GIS or existing signal plans to develop digital base mapping for the traffic signal designs. Utilizing digital base mapping, the CONSULTANT will prepare traffic signal design and plans for each intersection. Traffic signal plans shall be designed in accordance with the South Carolina Department of Transportation Traffic Signal Design Guidelines (latest edition), the Manual on Uniform Traffic Control Devices (2009 Edition), Standard Signal Specifications and Special Provisions (latest edition), SCDOT Standard Drawings, and SCDOT design specifications. Traffic signal plans shall also be designed in accordance with a detailed scope list for each intersection provided by SCDOT. All work is to be performed within existing right of way where possible. If additional right-of-way is needed, the CONSULTANT will make recommendations and coordinate with the SCDOT. The CONSULTANT will prepare a set of signal plans that identifies the location of signal poles, pedestrian poles, signal heads, pushbuttons and signs, sidewalk ramps and crosswalks, pull boxes, conduits, pavement markings, and keeps vehicle detection. Phasing diagrams, pay items and quantities will also be provided by the CONSULTANT. The plans shall be plotted at a scale not smaller than 1" = 40'. Assumptions: The SCDOT will provide available CAD files for the intersections; The SCDOT will provide any available hardcopies of existing signal plans; The CONSULTANT will not be required to provide survey services.</td>
</tr>
<tr>
<td>8</td>
<td>Cost Estimate</td>
<td>The CONSULTANT will calculate quantities and cost estimates for each intersection, utilizing pay items provided by SCDOT. The CONSULTANT will develop an excel spreadsheet for each intersection to show quantities required and anticipated costs. Anticipated costs will be based on the cost estimate file provided by the SCDOT.</td>
</tr>
<tr>
<td>9</td>
<td>Title Sheet/Quantity Sheet</td>
<td>The CONSULTANT will provide a Title sheet and Quantity Sheet (if required) for the purposes of project letting. Once project bundling is determined, the CONSULTANT will summarize quantities by intersection and by bundle.</td>
</tr>
<tr>
<td>10</td>
<td>Specifications Package</td>
<td>The CONSULTANT will provide Special Provisions and any other project specific specifications for work included in project. Standard traffic signal specifications will be used. The CONSULTANT will enter project details into the standard traffic signal special provision once project bundling is determined. Supplemental Specifications, Material Specifications, Special Provisions for Traffic Control will be provided by the SCDOT.</td>
</tr>
<tr>
<td>11</td>
<td>Signal Plan Files</td>
<td>The CONSULTANT will ensure cadd file and sealed pdf is loaded onto SCDOT signal inventory software.</td>
</tr>
</tbody>
</table>

Figure 4-63b

Signal Design Scope of Services and Task Descriptions (page 2)
Figure 4-64
Traffic Signal Utility Coordination Scope of Services

<table>
<thead>
<tr>
<th>#</th>
<th>Project Tasks</th>
<th>Task Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Management</td>
<td>The CONSULTANT will manage the project to conform to the SCDOT requirements for monitoring and controlling the engineering budget, project schedule and invoicing procedures. The CONSULTANT shall provide project management for all of the tasks detailed below including the submission of invoices and progress reports to the SCDOT. The CONSULTANT will assign a Project Manager to serve as the primary contact for communications with the SCDOT.</td>
</tr>
</tbody>
</table>
| 2 | Field Review with Utility Providers | The CONSULTANT will meet with utility providers to discuss the most feasible solution to implement the proposed signal improvements including possible relocation of signal poles, impact of adjustments to overhead or underground utilities. The CONSULTANT shall provide a single report including the following:
 - listing affected utilities by intersection, (obtained in task 6-11)
 - a summary of utilities located in each intersection quadrant (obtained in task 6-11)
 - one of the following for each utility provider:
 - Encroachment permit - with utility provided relocation plan
 - Agreement - with utility provided cost estimate and relocation plan
 - No Conflict Letter
 The CONSULTANT will work with the Utility Providers and SCDOT to prepare and execute the Utility Agreement, including a scope of work and schedule for completion. |
| 3 | Preparation of Agreements / Cost Estimates | The CONSULTANT will obtain cost estimates for each utility relocation/agreement. The CONSULTANT will coordinate with the Utility Provider and SCDOT to prepare and execute the Utility Agreement, including a scope of work and schedule for completion. |
| 4 | Coordination with District Utility office | The CONSULTANT will coordinate with SCDOT District Utility/Traffic Engineering staff including them in discussions and meetings with utility providers. The CONSULTANT shall provide sufficient documentation for District staff to initiate Utility agreements, if needed. |
| 5 | Certification & Document Report | The CONSULTANT will provide Utility Certification Report for inclusion in letting submittal package. |

Figure 4-65
Traffic Signal Railroad Coordination Scope of Services

<table>
<thead>
<tr>
<th>#</th>
<th>Project Tasks</th>
<th>Task Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Management</td>
<td>The CONSULTANT will manage the project to conform to the SCDOT requirements for monitoring and controlling the engineering budget, project schedule and invoicing procedures. The CONSULTANT shall provide project management for all of the tasks detailed below including the submission of invoices and progress reports to the SCDOT.</td>
</tr>
<tr>
<td>2</td>
<td>Evaluation of Existing RR ROW and Ranking of RR Crossing</td>
<td>Staff shall perform a preliminary check of plans and plans for discrepancies or anomalies that will require special attention (humped crossing, need for interconnection, etc.) and report any concerns to SCDOT. Staff shall coordinate with SCDOT RR staff to determine if RR crossing requires upgrades/improvements to RR crossing warning devices.</td>
</tr>
<tr>
<td>3</td>
<td>Identification of RR ROW Encroachment Needed</td>
<td>Staff shall identify whether RR ROW encroachment permit needed (Right of Entry, Flagging, Interconnection Agreement, etc.).</td>
</tr>
<tr>
<td>4</td>
<td>Coordination with RR for Permits</td>
<td>Staff shall initiate initial contact with RR ROW personnel describing proposed signal work to determine if right of entry permit is sufficient for contractor to perform work.</td>
</tr>
<tr>
<td>5</td>
<td>Development of Drawings/Documentation for RR permit</td>
<td>Staff shall prepare documents conveying the required work within RR ROW; necessary for contractor to obtain right of entry permit, including dimensioned plan/profile of signal equipment within RR r/w.</td>
</tr>
</tbody>
</table>
Other Signal Design Elements

Battery Back Up System (BBS)
A Battery Back Up System provides a stable supply of power to the signal (for 4-8 hours) during outages. In addition, BBS conditions power during surges or other power disruptions. Although BBS will not provide power over multiple days, in general, power outages are repaired within the 4-8 hours. If the outages last multiple days, it is generally in an emergency situation where law enforcement is present and travel is limited by the general public.

A BBS should be included in the design of signals interconnected with railroad devices. Other considerations for BBS include the following:

• Signal will have Ethernet communications; Ethernet communications is very sensitive to power disruptions and the BBS conditions power.
• Signalized intersection may be difficult to control traffic with emergency personnel during power outages. Some intersections are so large and have such complex phasing that multiple law enforcement personnel is required to operate the signal.
• Signalized intersections that are significant along evacuation routes.
• Signalized locations with traffic monitoring cameras.

BBS is standard SCDOT equipment and SCDOT has a material and construction specification for this equipment. The installation consists of a BBS cabinet and foundation for the batteries. This BBS cabinet is connected to or in some cases attached to the signal cabinet. See Chapter 5 Equipment for photos.

Emergency Preemption System
Some local governments operate preemption systems for emergency vehicles, generally fire trucks. Emergency preemption Systems include receivers installed at signals that when activated by transmitters, preempt normal signal operations and activate a designated preemption hold interval. The intent is to provide a green signal in the direction of oncoming emergency vehicles. Transmitters are generally installed in emergency vehicles.

Emergency Preemption Systems are not standard SCDOT equipment and both transmitters and receivers are the property of the local government. Local governments are responsible for any equipment replacement. If the preemption system malfunctions, SCDOT will remove it and contact the local government for pick up and replacement. It is the local governments responsibility to notify emergency personnel accordingly.

SCDOT does not have a material specification or construction specification for preemption systems. Therefore, this information must be obtained from the local government. In general, the type of preemptions system currently in use by the local government determines what type of receiver is installed at the signal.

If local authorities want to include emergency preemption system to the signal design, there are various methods to accomplish this:

• Emergency Preemption Systems can be installed under encroachment permit. The installation must be installed with a qualified signal contractor upon approval by SCDOT.
• If the signal installation or upgrade is within a project, the preemption system can be included with a financial participation agreement that details installation and maintenance responsibilities. Generally any cost added to the project for the installation of the preemption system is the responsibility of the local government.
Luminaires
Luminaires are not standard SCDOT equipment and are not necessary for signal operations. Some local governments desire luminaires to be installed on signal support poles or mast arm poles. SCDOT allows the installation, however there must be a separate power source and meter for the luminaire(s). SCDOT does not have a material specification or construction specification for luminaires. Therefore, this information must be obtained from the local government.

Wireless Detection Arrays
Wireless detection is standard SCDOT equipment. However, some local governments desire to install an array of wireless detection that operates as an origin destination detection system. If a local government desires wireless detection sensors exceeding the layouts shown in Figures 4-39 through 4-42, the local government should be financially responsible for the additional detection. Exceptions to this include if the District Traffic Engineer approves the detection layout as necessary or if the funding source allows the additional detection.
Traffic Signal Equipment Specifications

Equipment needed for each traffic signal or flashing beacon installation is detailed on the traffic signal or flasher plans.

SCDOT has Material Specifications and Traffic Signal Supplemental Technical Specifications-SC-M-675 (installation methodology) for each item needed as well as Standard Drawings detailing installation standards and requirements.

These Specifications and Standard Drawings are available on the SCDOT website.

Traffic Signal Equipment Qualified Products List (QPL)

SCDOT has established a process and listing for signal equipment meeting SCDOT Material Specifications at Qualified Products List (QPL).

SCDOT has an Evaluation Policy for Traffic Signal Equipment and an Evaluation Form.

Traffic Signal Pedestrian Equipment - Qualified Products Policy #90

Vehicle Loop Detection Equipment - Qualified Products Policy #91

Signal Heads, Modules, and Blankout Signs - Qualified Products Policy #92

Traffic Signal Controller, Cabinet, and Components - Qualified Products Policy #93

Traffic Signal Electrical Equipment and Support Cables - Qualified Products Policy #94

Traffic Signal Poles - Qualified Products Policy #95

Traffic Signal Network Devices - Qualified Products Policy #96

Flashers and Equipment - Qualified Products Policy #97
Pedestrian Group Qualified Products Policy #90

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Specification</th>
<th>Construction Specification</th>
<th>Supply Depot SCEIS #</th>
<th>Equipment Contract #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian Push Button Station Assembly w/ Sign</td>
<td>M686.4</td>
<td>SC-M-686-4</td>
<td>144140 - PB Station Assembly 9” X 15”, includes assembly, button and sign 144109 - PB Station Assembly 9” X 12”, includes assembly, button and sign 136818 Pedestrian Push Button (Solid State)</td>
<td>4400018371 Expires April 2023</td>
</tr>
</tbody>
</table>

Pay Items:

6865793 F&I Pedestrian Push Button Microswitch Type Station Assembly (9”x12”) & Sign (R10-3e or R10-3b)
6865794 F&I Pedestrian Push Button Microswitch Type Station Assembly (9”x15”) & Sign (R10-3e or $10-4a)
6865795 F&I Pedestrian Push Button Microswitch Type
6865796 F&I Pedestrian Push Button Solid State w/ Tone Station Assembly (9”x12”) & (R10-3e or R10-3b)
6865797 F&I Pedestrian Push Button Solid State w/ Tone Station Assembly (9”x15”) & (R10-3e or R10-4a)
6865798 F&I Pedestrian Push Button Solid State w/ Tone
686578A F&I Audible Pedestrian System (APS) inc. Pedestrian Head & Button Assembly with sign (R10-3e)
Pedestrian Group *Qualified Products Policy #90*

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Specification</th>
<th>Construction Specification</th>
<th>Supply Depot SCEIS #</th>
<th>Equipment Contract #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian Pole and Base</td>
<td>M682.4</td>
<td>SC-M-682-4</td>
<td>Not stocked at Supply Depot</td>
<td>4400018371</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Expires April 2023</td>
</tr>
</tbody>
</table>

Standard color - natural brushed aluminum, but generally available in powder coated:
Textured Black (B), Green (G), Brown (B)

Pedestrian Pole Anchor

Pedestrian Pole Collar

Anchor Bolts

Pedestrian Pole

4.5" diameter aluminium

Pedestrian Pole Foundation detail

Pay Items:

- 6825480 F&I 4’ Break-away Aluminum Pedestal Pole and Base
- 6825482 F&I 8’ Break-away Aluminum Pedestal Pole and Base
- 6825484 F&I 10’ Break-away Aluminum Pedestal Pole and Base
- 6888192 Powdercoating option for 4’ Aluminum Pole
- 6888193 Powdercoating option for 8’ Aluminum Pole
- 6888194 Powdercoating option for 10’ Aluminum Pole
- 6825486 Install Concrete Foundation for Aluminum Pedestal Pole
Pedestrian Group Qualified Products Policy #90

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Specification</th>
<th>Construction Specification</th>
<th>Supply Depot SCEIS #</th>
<th>Equipment Contract #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian Signal Heads</td>
<td>M686.3</td>
<td>SC-M-686-3</td>
<td>136957 Hand/Man Countdown Ped Head, no mounting hardware</td>
<td>4400018371 Expires April 2023</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>137036 Hand/Man Countdown Ped Head, clamshell left side mount</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>136956 Hand/Man Countdown Ped Head, clamshell right side mount</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>136812 Countdown, Hand/Man Pedestrian Module</td>
<td></td>
</tr>
</tbody>
</table>

Options

- Clamshell Mount
- Single Post Top
- Dual Post Top

Side of Pole Mounting

1/2 inch conduit incidental to button installation

Pay Items:

- 6865782 F&I Pedestrian Signal Head - mounting is incidental
- 6865783 F&I Countdown Pedestrian Signal Head - mounting is incidental
Vehicle Loop Detection Equipment Group *Qualified Products Policy #91*

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Specification</th>
<th>Construction Specification</th>
<th>Supply Depot SCEIS #</th>
<th>Equipment Contract #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop Sealant</td>
<td>M678.1</td>
<td>SC-M-678-1</td>
<td>Not stocked at Supply Depot</td>
<td>N/A</td>
</tr>
<tr>
<td>Loop Wire</td>
<td>M678.1</td>
<td>SC-M-678-1</td>
<td>136953 - Traffic Signal 14 Gauge Loop Wire Single Conductor, Black, w/ footage Markings, 5,000 Ft. Reel</td>
<td>N/A</td>
</tr>
<tr>
<td>Loop Lead - In Cable</td>
<td>QPL Group 94</td>
<td>M678.1</td>
<td>136821 4 Conductor Gray</td>
<td>4400015675 expires March 2022</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>136815 8 Conductor Gray</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>149401 16 (8 pair) Conductor Gray</td>
<td></td>
</tr>
</tbody>
</table>

Loop Sealant - incidental item

Pay Items:
6770413 F&I No. 14 Copper Wire, 1-Conductor for Loop Wire - sealant is incidental
6770389 F&I No. 14 Copper Wire, 4 Conductor Gray
6770394 F&I No. 14 Copper Wire, 8 Conductor Gray
Pay Items:
- 6865710 F&I 12” - 5-Section Signal Head - span wire mounting is incidental
- 6865720 F&I 12” - 4-Section Signal Head - span wire mounting is incidental
- 6865723 F&I 12” - 3-Section Signal Head - span wire mounting is incidental
- 6865834 F&I Backplate with Retroreflective Borders for Traffic Signal
- 6865831 F&I Vehicle Traffic Signal Head Mounting Assembly for Mast Arm

Signal Heads, Modules, and Blankout Signs Group

Qualified Products Policy #92

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Specification</th>
<th>Construction Specification</th>
<th>Supply Depot SCEIS #</th>
<th>Equipment Contract #</th>
</tr>
</thead>
</table>
| **Vehicle Signal Heads** | M686.1 | SC-M-686-1 | 137038 1 section, 12”, Yellow ball Signal Head
137033 3-section, RYG Signal Head,
137032 4-section, RYGGA Signal Head
136956 5-section, RGYGAYA Signal Head | 4400009067
4400009068
Expires August 2019 |
| **Backplates** | M898.1 | SC-M-686-1 | Not Stocked at Supply Depot | N/A |
| **Vehicle Signal Modules** | M686.1 | SC-M-686-1 | 137046 LED, Red ball, 12”, Signal Module
137047 LED, Yellow ball, 12”, Signal Module
136940 LED, Green ball, 12”, Signal Module
136941 LED, Red arrow, 12”, Signal Module
136960 LED, Yellow arrow, 12”, Signal Module
136939 LED, Green arrow, 12”, Signal Module | 4400009067
4400009068
Expires August 2019 |

Item

- **Material Specification**
- **Construction Specification**
- **Supply Depot SCEIS #**
- **Equipment Contract #**

Expires August 2019

Signal heads are polycarbonate material, and are supplied with signal head housing, modules, tunnel visors, dual entrance weather head, span wire mounting.

3-Section Signal Head

4-Section Signal Head

T Configuration, In-line Configuration

5-Section Signal Head

Backplate with Retroreflective Border

Vehicle Traffic Signal Head Mounting Assembly for Mast Arm

Vehicle Traffic Signal Head with mounting hardware
Balance Adjuster

Span Wire Hanger

Dual Entrance Weather head with Span Wire Hanger

Signal Housing

Signal Head Modules

Visor With Attachment Screws
Signal Heads, Modules, and Blankout Signs Group

Qualified Products Policy #92

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Specification</th>
<th>Construction Specification</th>
<th>Supply Depot SCEIS #</th>
<th>Equipment Contract #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blankout Sign</td>
<td>M686.5</td>
<td>SC-M-686-5</td>
<td>Not Stocked at Supply Depot</td>
<td>4400019311, Expires August 2019</td>
</tr>
</tbody>
</table>

Blankout Sign, “Symbolic” LED No Right/Left Turn

Pay Items:
- 6865820 F&I No Right/Left Turn Symbolic LED Blankout Sign w/ Span Wire Mounting
- 6865821 F&I No Right/Left Turn Symbolic LED Module

1-Section Red Signal Head

Pay Items:
- 6865736 F&I 12” - 1-Section Red Signal Head - span wire mounting is incidental
- 6865737 F&I 12” - 1-Section Yellow Signal Head - span wire mounting is incidental
- 6865820 F&I No Right/Left Turn Symbolic LED Blankout Sign w/ Span Wire Mounting
- 6865821 F&I No Right/Left Turn Symbolic LED Module
Non-QPL Traffic Signal Heads

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Specification</th>
<th>Construction Specification</th>
<th>Supply Depot SCEIS #</th>
<th>Equipment Contract #</th>
</tr>
</thead>
</table>
| Optically Programmable Vehicle Signal Heads | N/A | **686.2 Optically Programmable Vehicle Signal Heads**
(This is a stand-alone specification and is not included in Supplemental Technical Specification)
includes Material Specifications for Optically Programmable Vehicle Signal Head | Not Stocked at Supply Depot | N/A |
| Extra long visors, Louvers | N/A | Special equipment to shield signal indications to address special issues such as acute approach angles, or closely spaced signals | Not Stocked at Supply Depot | N/A |

Pay Items:

- 6865750 F&I 12”Optically Programmable 5 Section Vehicle Traffic Signal Head(R,Y,YA,G.GA)
- 6865760 F&I -12”Optically Programmable 5 Section Vehicle Traffic Signal Head(R+R,YA,G.A)
- 6865761 F&I - 12”Optically Programmable 5 Section Vehicle Traffic Signal Head(R,Y,G.GA)
- 6865770 F&I -12”Optically Programmable 5 Section Vehicle Traffic Signal Head(R,Y,G.)
Controller, Cabinet, and Components Group

Qualified Products Policy #93

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Specification</th>
<th>Construction Specification</th>
<th>Supply Depot SCEIS #</th>
<th>Equipment Contract #</th>
</tr>
</thead>
<tbody>
<tr>
<td>2070 Controller</td>
<td>M688.7</td>
<td>SC-M-688-7</td>
<td>136865 2070L Controller- 7A card, no software 2070 Controller includes: Model 2070-4B Power Supply Module, 3 Amp, Model 2070-3B Front Panel Module, Model 2070 - 1B CPU Module, single board, Model 2070-2A Field I/O Module, Model 2070-7A Asynchronous Serial Com Module</td>
<td>4400015603 Expires August 2022</td>
</tr>
<tr>
<td>332A Cabinet Assembly</td>
<td></td>
<td></td>
<td>136872 332A Cabinet Assembly</td>
<td></td>
</tr>
<tr>
<td>336S Cabinet Assembly</td>
<td></td>
<td></td>
<td>Not Stocked at Supply Depot</td>
<td></td>
</tr>
<tr>
<td>Conflict Monitor</td>
<td></td>
<td></td>
<td>Not Stocked at Supply Depot</td>
<td></td>
</tr>
</tbody>
</table>

Cabinet Assembly includes:
1 conflict monitor, 12 Load Switches, 2 DC Isolators, 14 Flash Programming Sockets, 7 Flash Transfer Relays, 8 LCD Enhanced Loop Detectors

Pay Items:

- **6845510** F&I Controller & 336 Cabinet Assembly - Pole Mounted
- **6845511** F&I Controller & 332/336 Cabinet Assembly - Base Mounted- foundation included
- **6887951** F&I Concrete Cabinet Foundations
Cabinet Assembly Elements:

Load Switches

Flasher

DC Isolator, Model 242, 170 Type, 2 Channel

Controller

Conflict Monitor 2018 ECL-ip, 2010 ECL-ip

Power Supply Cabinet

Serial Communication Module, Model 2070-7A

Loop Detector Amplifer, Model 222, 2 Channel

AC isolator, Model 252, 170 Type 2 Channel

Flash Transfer Relay, Model 430

Loop Detector, LCD Enhanced/Intelligent, 2 Channel
Non-QPL Traffic Signal Cabinets

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Specification</th>
<th>Construction Specification</th>
<th>Supply Depot SCEIS #</th>
<th>Equipment Contract #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flasher Cabinet</td>
<td>N/A</td>
<td>SC-M-688-8 includes Material Specifications for Flasher Cabinet Assembly consisting of 14"x14"x11" Aluminum Flasher Box with Mounting Brackets</td>
<td>Not Stocked at Supply Depot</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Pay Items:
6845655 F&I Flasher Cabinet Assembly
Traffic Signal Electrical Equipment and Support Cables Group

Qualified Products Policy #94

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Specification</th>
<th>Construction Specification</th>
<th>Supply Depot SCEIS #</th>
<th>Equipment Contract #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splice Box / Junction Box</td>
<td>M680.2</td>
<td>SC-M-680-2</td>
<td>Not Stocked at Supply Depot</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Pay Items:

- 6800518 F&I 13”x 24” x 18” Electrical Flash Underground Enclosure
- 680052C F&I 17”x 30” x 24” Electrical Flash Underground Enclosure
- 6800508 F&I 12” x 12” x 12” Electrical Flash Underground Enclosure

Mini Splice Box,

Electrical Flush Enclosure

Splice Box, Electrical Flush Enclosure

W/ Cover 13”X24”X18”

Hand Box, Electrical Flush Enclosure

W/ Cover, 17”X30”X24”
Traffic Signal Electrical Equipment and Support Cables Group

Qualified Products Policy #94

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Specification</th>
<th>Construction Specification</th>
<th>Supply Depot SCEIS #</th>
<th>Equipment Contract #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Cable</td>
<td>M677.1</td>
<td>SC-M-677-1</td>
<td>136822 4 Conductor Black</td>
<td>4400015675 Expires March 2022</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>136823 8 Conductor Black</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>149410 12 Conductor Black Electric Cable</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cable comes in 1,000' reels w/ footage markings</td>
<td></td>
</tr>
<tr>
<td>Loop Lead - In Cable</td>
<td>M678.1</td>
<td>SC-M-678-1</td>
<td>136821 4 Conductor Gray</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>136815 8 Conductor Gray</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>149401 16 (8 pair) Conductor Gray</td>
<td></td>
</tr>
<tr>
<td>Steel Cable</td>
<td>M682.3</td>
<td>SC-M-682-3</td>
<td>Not Stocked at Supply Depot</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Electric Cable

4-C, 8-C, 12-C, Black

Pay Items:

- 6770389 F&I 4-C Grey (Loop/Ped Detectors)
- 6770394 F&I 8-C Grey (Loop/Ped Detectors)
- 6770388 F&I 4-C Black (Signal/Ped Heads)
- 6770393 F&I 8-C Black (Signal/Ped Heads)

Electric Cable

4-C, 8-C, 8 pair, Grey

Steel Cable

3/8” Steel Cable (Span Wire)

Pay Items:

- 6825092 F&I 3/8” Galvanized Steel Cable (Span Wire)
- 6825090 F&I 1/4” Galvanized Steel Cable (Messenger Wire)

Steel Cable

1/4” Galvanized Steel Messenger Cable

Pay Items:

- 6825092 F&I 3/8” Galvanized Steel Cable (Span Wire)
- 6825090 F&I 1/4” Galvanized Steel Cable (Messenger Wire)
Non-QPL Traffic Electrical Equipment - Conduit

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Specification</th>
<th>Construction Specification</th>
<th>Supply Depot SCEIS #</th>
<th>Equipment Contract #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galvanized Rigid Conduit</td>
<td>N/A</td>
<td>SC-M-675 includes Material Specifications for Conduit (all connections, fittings needed are incidental items)</td>
<td>Not Stocked at Supply Depot</td>
<td>N/A</td>
</tr>
<tr>
<td>Schedule 80 PVC Conduit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexible Galvanized Steel Conduit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schedule 80 HDPE Rolled Conduit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pay Items:

For conduit either Trenched or Riser:
- 6750005 F&I 1” Galvanized Rigid Conduit
- 6750015 F&I 2” Galvanized Rigid Conduit
- 6750025 F&I 3” Galvanized Rigid Conduit
- 6750181 F&I 1” Aluminum Conduit
- 6750275 F&I 1” Schedule 80 PVC Conduit
- 6750278 F&I 2” Schedule 80 PVC Conduit
- 675027C F&I 3” Schedule 80 PVC Conduit

Pay Items:

For high accuracy directional boring:
- 675027S F&I 2” Schedule 80 PVC Conduit (Directional Bored)
- 675027V F&I 3” Schedule 80 PVC Conduit (Directional Bored)
- 675027Y F&I 4” Schedule 80 PVC Conduit (Directional Bored)
- 675027Z F&I Additional Conduit within Directional Bore
- 6760050 F&I 1” Schedule 80 HDPE Conduit (Trenchless)
- 6760060 F&I 2” Schedule 80 HDPE Conduit (Trenchless)
- 6760070 F&I 3” Schedule 80 HDPE Conduit (Trenchless)
- 6760080 F&I 4” Schedule 80 HDPE Conduit (Trenchless)

For flexibility:
- 6750175 F&I 1” Flexible Galvanized Steel Conduit - Weather Tight
- 6750179 F&I 2” Flexible Galvanized Steel Conduit - Weather Tight
- 675017D F&I 3” Flexible Galvanized Steel Conduit - Weather Tight

Open Cut:
- 6750262 F&I Encased Conduit (2-2” PVC, Schedule 40)
- 6750263 F&I Encased Conduit (3-2” PVC, Schedule 40)

For bored and jacked:
- 6750078 F&I 1” Galvanized Rigid Conduit (Bored & Jacked)
- 6750085 F&I 2” Galvanized Rigid Conduit (Bored & Jacked)
- 6750090 F&I 3” Galvanized Rigid Conduit (Bored & Jacked)
Non-QPL Traffic Electrical Equipment - Electric Service

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Specification</th>
<th>Construction Specification</th>
<th>Supply Depot SCEIS #</th>
<th>Equipment Contract #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Service</td>
<td>N/A</td>
<td>SC-M-680-1 includes Material Specifications for Electric Service (Meter, Meter Box, Power Connection, 3-wire Cable, Disconnect Switch)</td>
<td>Not Stocked at Supply Depot</td>
<td>N/A</td>
</tr>
</tbody>
</table>

680.1 Electric Service

- # 2 Service Feed/Conduit
- # 4 Meter Box/Meter
- # 5 Disconnect Switch

Meter Mounting type

Electric Service Mounting Location
- Pole
- Pedestal Mounted

Pay Items:
- 6800499 F&I Electric Service for Traffic Signal
- 6800500 Modify Electric Service for Traffic Signal
- 6770318 F&I #6 Triplex Aluminum Service Wire
Upcoming QPL Traffic Electrical Equipment - Battery Back-up System

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Specification</th>
<th>Construction Specification</th>
<th>Supply Depot SCEIS #</th>
<th>Equipment Contract #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Back-up System cabinet, batteries, back-up system controller</td>
<td>M689.1</td>
<td>689.1 Battery Back-up System (This is a stand-alone specification and is not currently included in Supplemental Technical Specification)</td>
<td>Not Stocked at Supply Depot</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Battery Back-up System
(cabinet adjacent to signal cabinet)

Battery Back-up System
(batteries)

Pay Items:

6845518
F&I Battery Back-up System including Foundation
Traffic Signal Poles Group

Qualified Products Policy #95

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Specification</th>
<th>Construction Specification</th>
<th>Supply Depot SCEIS #</th>
<th>Equipment Contract #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel Strain Poles</td>
<td>M688.5</td>
<td>SC-M-688-5</td>
<td>Not Stocked at Supply Depot</td>
<td>4400011625 Expires October 2020</td>
</tr>
<tr>
<td>Steel pole includes:</td>
<td></td>
<td></td>
<td>Steel pole includes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Design detail and shop drawings, hardware including anchor bolts (4), nuts, washers, pole cap, pole overs, pole plugs, span wire clamps (2) and associated hardware.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Steel poles shall have base plate labeled with manufacturer, lot #, length, diameter and ID #</td>
<td></td>
</tr>
<tr>
<td>Concrete Strain Poles</td>
<td>M688.6</td>
<td>SC-M-688-6</td>
<td>Not Stocked at Supply Depot</td>
<td></td>
</tr>
<tr>
<td>Concrete pole comes with:</td>
<td></td>
<td></td>
<td>Concrete pole comes with:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pole cap, hand hole covers, pull rope/wire, miscellaneous hardware</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Concrete pole shall be labeled with manufacturer, date, lot #, length, diameter, ground line capacity.</td>
<td></td>
</tr>
</tbody>
</table>

Pay Items:

Steel Pole

- 682505A: F&I 26’ Steel Strain Pole and Foundation
- 682505B: F&I 28’ Steel Strain Pole and Foundation
- 682505D: F&I 32’ Steel Strain Pole and Foundation
- 6825050: F&I 26’ Steel Strain Pole (Powdercoated) and Foundation
- 6825051: F&I 28’ Steel Strain Pole (Powdercoated) and Foundation
- 6825052: F&I 32’ Steel Strain Pole (Powdercoated) and Foundation
- 6825056: F&I 26’ Steel Strain Pole (Powdercoated over Galvanized) and Foundation
- 6825057: F&I 28’ Steel Strain Pole (Powdercoated over Galvanized) and Foundation
- 6825058: F&I 32’ Steel Strain Pole (Powdercoated over Galvanized) and Foundation

Concrete Pole

- 6825061: F&I 35’ Concrete Strain Pole
- 6825062: F&I 40’ Concrete Strain Pole
- 6825064: F&I 45’ Concrete Strain Pole
Non-QPL Traffic Signal Poles

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Specification</th>
<th>Construction Specification</th>
<th>Supply Depot SCEIS #</th>
<th>Equipment Contract #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood Pole</td>
<td>N/A</td>
<td>SC-M-682-1 includes Material Specifications for Wood Poles</td>
<td>Not Stocked at Supply Depot</td>
<td>N/A</td>
</tr>
<tr>
<td>Back-Guys</td>
<td>N/A</td>
<td>SC-M-682-1 includes Material Specifications for Back-Guys</td>
<td>Not Stocked at Supply Depot</td>
<td></td>
</tr>
</tbody>
</table>

- **Wood Pole**
 - Wood pole with Back guys
 - Wood pole with Sidewalk guys
 - Wood pole with Cabinet

- **Back-Guys**
 - Back-Guy Assembly including, eye-type thru-bolt, guy-hook, strandvise (or 3 bolt clamp), jumper-bonding clamp, steel cable (3/8" guy-cable stranded), screw-type guy anchor

Pay Items:

- 6825020 F&I 35’Wood Pole - Class 2 - CCA Treated
- 6825021 F&I 40’Wood Pole - Class 2 - CCA Treated
- 6825023 F&I 50’Wood Pole - Class 2 - CCA Treated
- 6825025 F&I 60’Wood Pole - Class 2 - CCA Treated

Signal with wood poles

- F&I 35’Wood Pole - Class 2 - CCA Treated
- F&I 40’Wood Pole - Class 2 - CCA Treated
- F&I 50’Wood Pole - Class 2 - CCA Treated
- F&I 60’Wood Pole - Class 2 - CCA Treated

Pay Items:

- 6825045 F&I 3/8” Back-guy for Wood Pole
- 6825046 F&I 3/8” Sidewalk Guy
- 6825047 F&I 3/8” Aerial Guy
Non-QPL Traffic Signal Poles

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Specification</th>
<th>Construction Specification</th>
<th>Supply Depot SCEIS #</th>
<th>Equipment Contract #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel Pole with Mast Arm</td>
<td>N/A</td>
<td>SC-M-690-1 includes Material Specifications for Mast Arms</td>
<td>Not Stocked at Supply Depot</td>
<td>N/A</td>
</tr>
<tr>
<td>Luminaires</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A - Although Luminaires are installed in SCDOT construction projects, the local government typically provides the specification for the luminaire.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Pay Items:
- 6888179 Design, Furnish & Install Steel Pole w/ Mast Arm including Foundation
- 6888172 Design, Furnish & Install Steel Pole w/ Mast Arm without Foundation
- 6888177 Design, Furnish & Install Steel Pole w/ Twin Mast Arm including Foundation
- 6888178 Design, Furnish & Install Steel Pole w/ Twin Mast Arm without Foundation
- 6888166 Powdercoating Per Mast Arm over Base
- 6888167 Powdercoating Per Mast Arm over Galvanized
- 6888168 Decorative Option per Mast Arm
- 6888174 Install Foundation for Mast Arm including Concrete and Rebar
- 6888169 Luminaire Option for Mast Arm- to account for taller pole
- 6865164 F&I Dual Luminaire including Luminaire Arms and all associatede hardware
- 6865831 F&I Single Luminaire including Luminaire Arms and all associatede hardware
- 6513020 F&I Mounting Assembly for Flat Sheet Sign erected on Mast Arm
- 6865831 F&I Vehicle Traffic Signal Head Mounting Assembly for Mast Arm
COMMUNICATIONS GROUP (TRAFFIC SIGNAL NETWORK DEVICES)

- Video Detection System
- Wireless Detection System
- Short Range Radio Device Detection System
- Traffic Monitoring Cameras for Traffic Signals
- Wireless Broadband Radio Communications
- Ethernet Switches
- Fiber
- Factory Terminated Patch Panel
- Fiber Interconnect Center
- Fiber Modem
- Cell Modem

Traffic Signal Network Devices *Qualified Products Policy #96*

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Specification</th>
<th>Construction Specification</th>
<th>Supply Depot SCEIS #</th>
<th>Equipment Contract #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Detection - Loop Emulation System</td>
<td>M688.3</td>
<td>SC-M-688-3</td>
<td>Not Stocked at Supply Depot</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Pay Items:

- 6886042 F&I Video Detection Camera with Hardware and Lead-in
- 6886044 F&I Video Detection System Single Channel Processor Hardware - No Camera
- 6886045 F&I Video Detection System Dual Channel Processor Hardware - No Camera
- 68886042 F&I Video Detection Cable to Cross Roadway
Non-QPL Detection Equipment

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Specification</th>
<th>Construction Specification</th>
<th>Supply Depot SCEIS #</th>
<th>Equipment Contract #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless Vehicle Detection System</td>
<td>N/A</td>
<td>SC-M-678-2 includes Material Specifications for Wireless Detection System consisting of Sensors, Antennas, Repeaters, Cabinet Interface</td>
<td>Not Stocked at Supply Depot</td>
<td>N/A</td>
</tr>
<tr>
<td>Short-Range Radio Device Detector System</td>
<td>N/A</td>
<td>SC-M-699-1 includes Material Specifications for Short-Range Radio Device Detector System (Origin-Destination Device (Blue Toad))</td>
<td>Not Stocked at Supply Depot</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Pay Items:

- 677049C F&I Wireless Detection System w/o Sensors (Including Setback Detection Capability for 2 directions)
- 677049D F&I Wireless Detection System w/o Sensors (Including Setback Detection Capability for 3 directions)
- 677049E F&I Wireless Detection System w/o Sensors (Including Setback Detection Capability for 4 directions)
- 677049F F&I Wireless Detection System w/o Sensors (without Setback Detection Capability)
- 6770494 F&I Flush Mounted Wireless Sensor
Non-QPL Network Devices for Traffic Signals - Procured by SCDOT with Public Interest Finding

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Specification</th>
<th>Construction Specification</th>
<th>Supply Depot SCEIS #</th>
<th>Equipment Contract #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Monitoring Cameras for Traffic Signals</td>
<td>Make & Model for Cohu Camera(s)</td>
<td>SC-M-688-3 for installation method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wireless Broadband Radio (WBB)</td>
<td>N/A</td>
<td>SC-M-677-7 for installation method</td>
<td>Not Stocked at Supply Depot</td>
<td></td>
</tr>
<tr>
<td>Ethernet Switch</td>
<td>N/A</td>
<td>N/A - Configured and installed by SCDOT IT personnel or designee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Modem</td>
<td>N/A</td>
<td>N/A - Configured and installed by SCDOT IT personnel or designee</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Non-QPL Communications Equipment

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Specification</th>
<th>Construction Specification</th>
<th>Supply Depot SCEIS #</th>
<th>Equipment Contract # enquiries for:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber Optic Cable - 12 strand SMFO (Single mode Fiber Optic Cable)</td>
<td>N/A</td>
<td>SC-M-677-3 includes Material Specifications for Fiber Optic CableWood Poles</td>
<td>Not Stocked at Supply Depot</td>
<td>4400019542 expires September 2023</td>
</tr>
<tr>
<td>Fiber Interconnect Centers</td>
<td>N/A</td>
<td>SC-M-677-3 includes Material Specifications for Fiber Interconnect Centers</td>
<td>Not Stocked at Supply Depot</td>
<td></td>
</tr>
<tr>
<td>Factory Terminated Patch Panel (Gator Patch)</td>
<td>N/A</td>
<td>SC-M-677-6 includes Material Specifications for Fiber InFactory Terminated Patch Panel</td>
<td>Not Stocked at Supply Depot</td>
<td></td>
</tr>
</tbody>
</table>

Pay Items:
- 6770470 F&I 12 Strand Fiber Optic Cable - Single Mode
- 677046D F&I Self Supporting 12 Strand Fiber Optic Cable - Single Mode
- 6770476 F&I Fiber Optic Interconnect Center
- 6888082 F&I Factory Terminated Patch Panel
QPL Items for #97 Flashers and Equipment Qualified Products Policy #97

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Specification</th>
<th>Construction Specification</th>
<th>Supply Depot SCEIS #</th>
<th>Equipment Contract #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Powered Flasher</td>
<td>M688.9</td>
<td>SC-M-688-9</td>
<td>Not Stocked at Supply Depot</td>
<td>4400017286 Expires October 2020</td>
</tr>
<tr>
<td>Assembly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The types of Solar Flasher Assembly are listed below:

- 24/7 Single Solar 24 Hour Flashing Beacon
- Single Compact Solar 24 Hour Flashing Beacon
- Dual 24 Hour Solar Powered Flashing Beacon
- Dual Solar Powered School Flashing Beacon
- Dual Compact Solar School Zone Flasher

Pay Items:

- 6865700 F&I Solar Powered Flasher Assembly - Single Beacon
- 6865701 F&I Solar Powered Flasher Assembly - Dual Beacon
- 6865702 F&I Solar Powered Flasher Assembly
Signal System:
A signal system consists of signals that operate to promote progression. The purpose of installing a signal system is to reduce delay, travel times and emissions. Signal systems do not add capacity to the roadway, but are important in managing capacity. The coordination of signals spaced no more than a quarter mile apart is desirable to promote a non-stopping flow of vehicles through the signalized area during peak traffic hours (a.m., noon, school dismissal, p.m.) during the weekday. This will improve the efficiency of traffic flow and minimize stops, delays and queueing.

Signal timing and coordination design is important because it directly affects the quality of our transportation system, which in turn affects virtually everything within our communities. Signal timing impacts the time we spend traveling, the quality of the air we breathe, the safety of roadway we travel, the costs of our trips, and many other aspects of our lives. Poorly timed and maintained signals can reduce the capacity of the roadway and result in unnecessary stops and delays.

There are different types of signal systems. Signal Operations duties are vital in maintaining the effectiveness of signal systems.

Signal Re-timings
Signal re-timings should be considered at least every 3 years.

Several changes to signalized intersections warrant the re-timing of traffic signals:

• When a new signal is added or a signal is updated
• When traffic or pedestrian volumes, or turning movements change significantly
• When access to a roadway changes
• When there is a change in the geometry of a roadway.

This information came from ITE, “Traffic Control System Operations: Installation, Management and Maintenance”

Signal Systems Operations
Traffic Signal System Operational (Re-timing) activities are classified as Type 1 Signal Activities. Operations experts monitor and verify communications between signals in a system. Fine tuning signal systems in the field by adjusting offsets and splits (as provided by the engineer) are also part of operating a signal system. Count data and Synchro are tools used as an aid in this endeavor.

Signal Operations duties include the following

• monitoring signal timings to ensure appropriate operation, including correct splits/offsets, entering coordination at appropriate times
• monitoring equipment operation to ensure malfunctions are repaired such as vehicle detection or pedestrian detection
• ensuring signal communications is operational include verifying integrity of fiber optic, wireless communication, Ethernet switches, cell modem
• fine tuning signal systems to address changing traffic volumes by adjusting offsets and splits (as provided by the engineer), using count data and Synchro as a tool in aid of this endeavor
Signal Systems and Roadway Capacity
No form of signal timing can create additional capacity. Traffic Signal Systems only manage capacity. The effectiveness of any traffic signal system relies heavily on available roadway capacity, signal phasing, signal equipment in good repair, sufficient and working detection, operational communications, and personnel to operate/monitor operations of the system. Any signal system installed in SC and maintained by SCDOT should connect to SCDOT’s network via an Ethernet connection.

Communications
With Ethernet communications, verification of communication is constantly monitored. If communications is not available, signal maintainers are notified via email or text.

For systems that do not have constant communications, but are Ethernet upgraded, communications should be verified multiple times daily.

Communications between the traffic signal controller and the central traffic signal software ensure signals are operating as designed. Needed signal timing adjustments can be made expeditiously and remotely with Ethernet communications.

Signal data resides on a server hosted on SCDOT network, Co-Location networks or on local government networks. Signals that do not have communications are operated/revised using software on laptops that connect to the signal controller via cable or blue tooth.

Signal System Operations Tools
As discussed in Chapter 2 there are tools to optimize signal systems remotely. One of these tools is traffic monitoring cameras that can pan, tilt and zoom and provide remote visibility along the corridor. Another tool for systems operations is count information. Daily count data can be available if detection is installed to allow count data collection per lane. Consideration for future advanced traffic communication signal system technology should occur when determining detection placement.

Signal System Settings (Coordination Plans)
Coordination plans include multiple timing plans consisting of cycle lengths, splits and offsets) for specific times of the day and days of week, and special events (planned or manually selected. How these plans are implemented (or chosen) dictate the type of system in place:

- Time of day utilizes pre-set, scheduled plans, predicated by the time of day, day of the week and week of the year.
- Responsive selects the timing plan based on time of day but will change to a different cycle length with pre-set splits based traffic volumes exceeding or below a threshold. There are limitations on making drastic cycle length changes.
- Adaptive measures volumes per lane and stores historical data that predicts splits and cycle lengths. These predictions create a starting cycle length/split and offset based on historical data however are constantly adjusted based on current traffic volumes.
The following information is required to establish coordination plans:

- Average Annual Daily Traffic (AADT) – by approach – this is needed to determine how much green time is needed to serve changes in cycle length and directional distribution
- Turning Movement Counts for peak hours in 15 minute increments
- Crash History – to address identified safety issues
- Field reviews during peak hour
 - To record existing conditions (# lanes, usage, identify lane configuration, signal equipment, signing, pedestrian treatment, character of area)
 - To assess intersection performance (phasing, queuing, driveway operation, adjacent driveways influencing signals, intersections that add and subtract large volumes from mainline)
 - Travel along corridors to compare prevailing speeds with posted speeds, bottle necks, queuing
 - Determine size of signal system based on signal spacing and arrival patterns between signals
 - Ensure detection is in place and operational
 - Current timings are in place and operating as designed

Follow the iterative process below (manually or using Synchro software):

- Determine if current phasing or lane usage should be revised
 - Are additional phases needed to serve left turns;
 - Should left turn phasing type be revised (permissive, protected/permissive, protected only, service by time of day)
 - Should side street lane uses be revised to provide additional capacity (shared lanes, split phasing)
- Determine critical intersection based on phasing and volumes
- Establish prevailing cycle length needed to serve AM, PM, noon, off peak, weekend traffic volumes of critical intersection
- Determine if full cycle length is needed at remaining signals or if the signal can operate effectively utilizing half the prevailing cycle length
- Determine maximum split for each phase (either ensuring adequate time for pedestrian timings or allow pedestrian activation to suspend coordination temporarily to provide sufficient timing)
- Determine order of cycle length to maximize green band – putting greater weight on prevailing traffic direction
- Determine offsets based on the above

Perform these steps for each time frame – generally AM, PM, Mid-day, Off Peak, Weekend, Special (holiday, beach season, football, fair traffic). Establish multiple timing plans with varying cycle lengths and splits for each time frame for testing and evaluation.

Timing Plan - Week Days

<table>
<thead>
<tr>
<th>Time of Day</th>
<th>Free</th>
<th>#1 AM Peak</th>
<th>#9 Off Peak</th>
<th>#2 Mid-day Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 Mid-Night - 6:30 A.M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:30 - 9:00 A.M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00 - 11:45 A.M.</td>
<td></td>
<td></td>
<td>#9 Off Peak</td>
<td></td>
</tr>
<tr>
<td>11:45 A.M. - 1:00 P.M.</td>
<td>#2 Mid-day Peak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00 - 2:30 P.M.</td>
<td></td>
<td></td>
<td></td>
<td>#9 Off Peak</td>
</tr>
<tr>
<td>2:30 - 4:30 P.M.</td>
<td></td>
<td></td>
<td>#4 School Peak</td>
<td></td>
</tr>
<tr>
<td>4:30 - 6:30 P.M.</td>
<td></td>
<td></td>
<td>#9 PM Peak</td>
<td></td>
</tr>
<tr>
<td>6:30 - 10:00 P.M.</td>
<td></td>
<td></td>
<td>#9 Off Peak</td>
<td></td>
</tr>
<tr>
<td>10:00 - 12:00 Mid-Night</td>
<td></td>
<td></td>
<td></td>
<td>Free</td>
</tr>
</tbody>
</table>

Timing Plan - Special Events

(Specify Day of Week and Week of Year) Example - Black Friday

<table>
<thead>
<tr>
<th>Time of Day</th>
<th>#8 Special Shopping Peak</th>
<th>#1 AM Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 Mid-Night - 4:30 A.M.</td>
<td>Free</td>
<td>#1 AM Peak</td>
</tr>
<tr>
<td>4:30 A.M. - 10:00 PM</td>
<td>#8 Special Shopping Peak</td>
<td>#1 AM Peak</td>
</tr>
<tr>
<td>10:00 - 12:00 Mid-Night</td>
<td>Free</td>
<td>#1 AM Peak</td>
</tr>
</tbody>
</table>

Timing Plan - Week Ends

<table>
<thead>
<tr>
<th>Time of Day</th>
<th>Free</th>
<th>#9 Off Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 Mid-Night - 6:30 A.M.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:30 - 11:45 A.M.</td>
<td></td>
<td>#9 Off Peak</td>
</tr>
<tr>
<td>11:45 A.M. - 6:30 P.M.</td>
<td>#5 Shopping Peak</td>
<td></td>
</tr>
<tr>
<td>6:30 - 10:00 P.M.</td>
<td>#9 Off Peak</td>
<td></td>
</tr>
</tbody>
</table>
Cycle splits: The cycle split is the percent (or actual seconds) of time each phase is served, in relation to the overall cycle length. This is calculated by summing the maximum green, yellow and red time for each phase.

Phase Sequence: The phase sequence is the predetermined order the phases occur under steady demand.

Offset: This is a relational value calculated based on the speed of travel, the distance between intersections and the green time on the mainline roadway, using a time space diagram. The reference point in the phase is typically the beginning of yellow for the side street phase.

Force Off: Used to terminate side street green and is equal to the non-coordinated maximum green time (determined from time/space diagram) + coordinated phase clearance (yellow + all red) + any non-coordinated phases between this phase and the coordinated phase and their clearance.

Permissive Period: Allows controller to yield if a call is placed shortly after the yield point, and is calculated by taking the non-coordinated phase force off and subtracting the sum of that phases initial + passage (minimum green time) and subtracting out the main street clearance (yellow + all red).

By example, using Figure 6-1 below, the force off would be calculated as follows:

Recall - This setting can be set to “MIN” or “MAX” for the phases desired for the controller to serve, regardless of traffic demand. Typically, phases 2 and 6 are set to ‘MIN’ recall.

Red Revert - (0-25.5 sec..) applies to all phases that are programmed as red rest phases. This parameter insures that the phase will remain in red rest for the minimum period specified before the phase is re-serviced.

Float - Phases other than the coordinated phase(s) are active for their assigned split time only. This causes unused split time to revert to the coordinated phase.

Fixed - Phases are forced-off at fixed points in the cycle. This allows unused split time of a phase to revert to the phases served next in the sequence.
Timing Sheets

The SCDOT has timing sheets for 2070 controllers. Once Coordination is determined it is logged on these timing sheets and sent to the district signal shop for installation in the controllers. Once the signal timing has been programmed for the intersection or system, there is typically a field review to determine if any timing changes need to be implemented. Below is a 2070 timing sheet with instructions:

![2070 Timing Sheet](image)

Notes on 2070 timing sheets:
- **Times table:** For free operation. The Min Green and Max times maybe overridden when the signal is operating a coordination plan.
- **Options table:** Assigns operations to phases.
- **Pattern table:** For coordination plans. Assigns a cycle length, offset, and a sequence plan to a specific split table. Only one pattern may be active at a time.
- **Split table:** References the pattern table, assigns a split time for each phase.
- **Day Plan:** Assigns an action for a time of day, the pattern calls the split.
- **Coord Modes Table:** Provides basic features related to coordination and applies to all coordination patterns and may not be modified by time of day.
- **Unit Params:** Assigns controller operation: Float, Fixed, or Other.
- **Max 1, Max 2, or Max Inhib:** STD 8 - used for most intersections or QuSEQ - used for split phased intersections.

Figure 6-2

2070 Timing Sheet

Below is an example Time / Space Diagram from Synchro software.

![Time Space Diagram](image)

Figure 6-3

Time Space Diagram
Time Space Diagrams are a pictorial depiction of travel through a signal system where the distance between signals is represented on the vertical axis and time is the horizontal axis. The diagonal lines represent travel at a particular speed. The diagram shows where adjustments to offsets, splits and phasing can improve progression. Horizontal lines at signals indicate the backups and queuing that will occur. Synchro is a good tool to begin development of coordination timings, however field fine tuning is vital in signal system timing improvements.

Signal System Regional Planning

SCDOT’s goal is to have a Signal System Regional Master Plan for each Metropolitan Planning Organization (MPO) area in the state. The Signal System Regional Master Plan will provide a planning document that details what type of signal system operation is appropriate. The Signal System Regional Master Plan should consist of the information listed below:

Corridor Evaluation
An evaluation of the corridor should be conducted to include documentation of traffic volumes and patterns. The study should note any factors that contribute to irregular or unpredictable traffic volumes along the corridor.

1. Time of Day Signal Timing will be considered the standard for predictable traffic volumes and splits occurring at predictable times of day and days of the week.

2. Traffic Responsive Signal Systems will be considered for corridors with predictable traffic volumes and splits that occur at unpredictable times of day and days of the week. (Corridors subject to event traffic, for example.)

3. Traffic Adaptive Signal Systems will be considered for corridors with unpredictable traffic volumes and splits or areas with sharp peaks where traffic responsive cannot adjust timing plans quickly enough to respond to the change in demand. Traffic Adaptive may also be implemented within construction projects, where patterns change due to construction phasing.

If the Corridor Evaluation indicates a need for an Advanced Traffic Signal System, either Responsive or Adaptive, the following measures should be implemented to improve traffic operations on the subject corridor to provide a basis for benefit/cost comparisons between the 3 types of signal systems.

1. The subject system must be currently operating as a coordinated signal system.
2. Operational improvements should be made at each intersection in the corridor to ensure the existing signal configurations are maximizing operation efficiency. These improvements should include:
 a. Ensure existing detection is operational and install additional if necessary
 b. Review gap times to ensure signal is operating efficiently
 c. Review phase allocation and green time served and make split adjustments for efficiency
 d. Implement Flashing Yellow Arrows for all protected/permitted left turn phases.
 e. Implement lagging left turn phases where possible.
3. Time of Day Signal Timing plans should be evaluated and field fine-tuned to ensure system operations are
optimized.

 a. Adjust offsets or phase sequence to improve coordination
 b. Adjust time entering or exiting coordination as necessary

Upon implementation of these measures, a determination may be made that the TOD Signal System is sufficient for operation of the corridor. If an Advanced Traffic Signal System is the better option, the following elements should be included in the implementation:

 • Before/After study of delay, travel time, # stops
 • Travel time devices should be installed for a minimum of 3 months prior and 3 months after to determine the effectiveness of the system. (It is recommended that these devices are installed up to a year in advance and remain at least a year after, to truly evaluate the effectiveness of the system.)
 • Traffic monitoring cameras are recommended to be installed to be used to address citizen comments and concerns.

SIGNAL SYSTEM TYPE

Time of Day (TOD) Signal System

The most common type of system is the Time of Day (TOD) Signal System. TOD Signal Systems operate specific cycle lengths, splits and offsets based on the time of the day and day of the week, based on traffic signal timing studies. TOD Signal Systems are very effective to address recurring traffic patterns for commuter or expected traffic volumes. For optimum operations, TOD signal systems should be re-evaluated on a 3 to 5 year basis, as there is not an automated way to adjust for volume changes over time. TOD signal systems also do not have a way to address unexpected traffic volumes due to incidents, weather or events.

Traffic Responsive Signal System:

A Traffic Responsive Signal System selects from a variety of pre-determined cycle lengths, splits and offsets based upon traffic volumes detected along the arterials. This allows the signal system to ‘respond’ to live traffic volumes and changing conditions. Traffic Responsive Signal Systems must ‘transition’ from one timing plan to an other and this ‘transition’ time generally occurs over 2 to 3 cycle lengths. This means that response time to address significant changes in traffic volumes can take 5 to 10 minutes.

This type of system minimizes stops on high speed arterial or in a grid of regularly spaced intersections by split control and cycle length selection. There are preset timing plans for specific times of day and days of week with option to go to different plans if traffic volumes reach preset thresholds.

Traffic Responsive Signal System coordination is based on a rapid reaction to sensed traffic conditions. It is an operator controlled system in that the operator can override the normal program by selecting a special timing plan from the District Office or Traffic Management Center.

Adaptive Signal Systems

An Adaptive Traffic Signal System also adjusts to changing traffic volumes and patterns. Over time, the Adaptive Traffic Signal System ‘learns’ from previous traffic patterns and tends to predict incoming volumes and transitions more rapidly than Responsive Traffic Signal Systems to changing conditions. Adaptive Traffic Signal Systems rely on detection to make these decisions. Adaptive systems attempt to minimize stop delay in an open network of roadways with similar characteristics by reducing cycle lengths and optimizing splits. Adaptive Timing has no specific timing plan – based on existing volumes and demands

Pros and Cons of Time of Day vs Advanced Signal Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
<th>Monitoring Needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time of Day</td>
<td>3-5 years</td>
<td>(weekly monitoring)</td>
</tr>
<tr>
<td>Traffic Responsive</td>
<td>for 4-7 years</td>
<td>(daily monitoring)</td>
</tr>
<tr>
<td>Traffic Adaptive</td>
<td>No retiming cycle</td>
<td>(periodic monitoring/ more at beginning)</td>
</tr>
</tbody>
</table>

Frequency / Monitoring Needs for Time of Day and Advanced Signal Systems

Average Cost to Re-time Signals
- Time of Day - $6,000/signal
- Traffic Responsive - $8,000/signal plus detection
- Traffic Adaptive - $15,000/signal plus detection
- Typical Benefit to Cost ratio is 40:1
Types of Adaptive Systems
Two adaptive systems have been used in SC:

In Synch adaptive (Rhythm Engineering) utilizes a processing unit that operates an adaptive system by monitoring detector inputs from the traffic controller. This adaptive system is compatible with any type of controller and software. Rhythm Engineering monitors these systems and provides 2 years’ service and maintenance with the purchase of the system. There is a requirement for Ethernet communications as there are IP address-able cameras and processing unit. Adaptive systems that utilize separate processing units are the sole responsibility of the entity that maintains the signal system, or the entity that procured the funds for the adaptive signal processing units. All repairs or replacements, such as for lightning or other non-warranted issues, will be the responsibility of the procuring entity. This expense is eligible as signal equipment under the Signal Maintenance Agreement.

Synchro Green adaptive (Trafficware) utilizes a central software that resides on the central signal server and local software that resides on each controller. SCDOT has this adaptive system on state contract. The benefits of this adaptive is the ability to run this adaptive system in the background, with live detector inputs, prior to installation in the field. This allows the engineer to ‘test’ the adaptive prior to field operation. Stop bar detection for each lane is required for appropriate operation of this adaptive system.

Benefits of Signal Re-timing
- Reduced travel time & fuel consumption
- Signal Re-timing costs are minimal compared to construction capacity costs, such as adding lanes
- Savings pays for total project cost within a short time frame
- Benefit to Cost ratio generally exceeds 2:1 and can be as high as 40:1

Factors that can negatively affect signal re-timing
- More than 2 signal phases reduces the amount of green time serving each phase
- Traffic signal spacing <800’ can result in queueing between signals due to heavy side street volumes or > 1 mile platoons of traffic dissipate, resulting in intermittent vehicle arrivals
- Signals adjacent to free flow movements, like channelized right turns from interstates can result in queueing and merging issues
- Pedestrian recall settings, Exclusive pedestrian phases can create undue delay to side streets
- Unexpected fluctuations in traffic may overwhelm planned signal system timings
- Short auxiliary lanes often back up and block through lanes
- Defective detection results in serving maximum green times which can create undue delay
Impact of equipment and maintenance on signal timings

- Maintaining communications to signal systems is vital to signal operations and management
- Ensuring signal systems settings are appropriate for existing conditions is vital to appropriate operations
- Detection malfunctions result in phases serving maximum green times regardless of vehicle demand—this creates delay in serving phases where no cars or pedestrians are present.
- Traffic Monitoring tools such as cameras with pan/tilt/zoom capability is important for engineers to view issues remotely to assess mitigating congestion.
- Synchro Traffic Modeling software can assist engineers in applying appropriate signal system settings such as offsets, splits and phase sequencing

Synchro Traffic Modeling Software

SCDOT uses Synchro to assist in the determination of cycle lengths and splits for isolated intersections or for signal systems where coordination is needed. Synchro will yield reports concerning level of service, delay, and queuing to assist in obtaining a starting point for signal coordination. Simulation Traffic models the intersection or signal systems vehicle traffic and also has the ability to view data in 3D.

Consultants performing signal re-timing for SCDOT shall provide Synchro files detailing proposed signal timing plans.

SCDOT Synchro Defaults

The following settings are SCDOT defaults, unless directed otherwise:

Network Settings
- Peak Hour Factor – 0.90
- Yellow – 4 seconds
- Red – 2 seconds
- Offset style – Beginning of Yellow
- Minimum green time for through phases – 22 seconds
- Minimum green time for left turn phases – 15 seconds
- Simulation taper length – 100 feet
- Crosswalk width – 10 feet
- Consider Lead/Lag optimization only if no left turn trap situation
- If no system is in place set as Actuated uncoordinated; If system is in place set as Actuated Coordinated

Detector Templates
- Left turn lane – Detector 1 - 0 feet from stop bar, length - 30 feet
- Generally for side streets, use loops at stop bar (leading to 0)
- Edit template phases – 2 Southbound, 4 Westbound or as shown on signal plan

Simtraffic
- Intervals and volumes
- Seed 10 min*, record 60 or record 4 15-minute intervals
- * for large networks seeding should cover saturating network

All other default settings within Synchro should be used unless approved by SCDOT.

See Figures 6-6, 6-7, and 6-8 for example reports from Synchro. Also, see Figure 6-9 to see a Comparison Report for Level of Service, Volume Capacity Ratio, and Delay.
Figure 6-6
Synchro System Screen Shot

Figure 6-7
Synchro Level of Service Report Screen Shot

Figure 6-8
Synchro Lanes, Volumes, Timings Report Screen Shot
Figure 6-9
Synchro Level of Service, Volume to Capacity Ratio, Delay Comparison Report

Lexington (32) - Bush River Rd

AM

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Cycle1</th>
<th>Cycle2</th>
<th>Cycle3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bush River Rd @</td>
<td>60</td>
<td>90</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>Outlet Point Blvd</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Berryhill Rd</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>I-20 WB Ramp</td>
<td>D</td>
<td>1.15</td>
<td>1.15</td>
<td>1.32</td>
</tr>
<tr>
<td>I-20 EB Ramp</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Independence Blvd</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Mx V/C Ratio</td>
<td>0.74</td>
<td>0.81</td>
<td>0.78</td>
<td>0.75</td>
</tr>
<tr>
<td>Intersection Delay</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>110</td>
</tr>
</tbody>
</table>

Average

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Cycle1</th>
<th>Cycle2</th>
<th>Cycle3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bush River Rd @</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>Outlet Point Blvd</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Berryhill Rd</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>I-20 WB Ramp</td>
<td>B</td>
<td>0.58</td>
<td>0.70</td>
<td>0.59</td>
</tr>
<tr>
<td>I-20 EB Ramp</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Independence Blvd</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Mx V/C Ratio</td>
<td>0.81</td>
<td>0.79</td>
<td>0.59</td>
<td>0.56</td>
</tr>
<tr>
<td>Intersection Delay</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>110</td>
</tr>
</tbody>
</table>

PM

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Cycle1</th>
<th>Cycle2</th>
<th>Cycle3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bush River Rd @</td>
<td>90</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Outlet Point Blvd</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Berryhill Rd</td>
<td>D</td>
<td>1.06</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>I-20 WB Ramp</td>
<td>C</td>
<td>0.84</td>
<td>0.70</td>
<td>0.76</td>
</tr>
<tr>
<td>I-20 EB Ramp</td>
<td>B</td>
<td>0.72</td>
<td>0.63</td>
<td>0.61</td>
</tr>
<tr>
<td>Independence Blvd</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Mx V/C Ratio</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>0.91</td>
</tr>
<tr>
<td>Intersection Delay</td>
<td>90</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
</tbody>
</table>

Other

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Cycle1</th>
<th>Cycle2</th>
<th>Cycle3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bush River Rd @</td>
<td>90</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Outlet Point Blvd</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Berryhill Rd</td>
<td>C</td>
<td>0.52</td>
<td>0.53</td>
<td>0.51</td>
</tr>
<tr>
<td>I-20 WB Ramp</td>
<td>C</td>
<td>0.75</td>
<td>0.63</td>
<td>0.62</td>
</tr>
<tr>
<td>I-20 EB Ramp</td>
<td>A</td>
<td>0.45</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td>Independence Blvd</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Mx V/C Ratio</td>
<td>0.53</td>
<td>0.51</td>
<td>0.59</td>
<td>0.59</td>
</tr>
<tr>
<td>Intersection Delay</td>
<td>90</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
</tbody>
</table>

File: Lexington
Designed By: Independence
Date Submitted: 39826
Task 3 Signal Timing - 1-5 Intersection (per intersection)
Task 4 Signal Timing - 6-10 Intersection (per Intersection)
Task 5 Signal Timing - 11+Intersection (per Intersection)

The purpose of this Task is to provide optimized traffic signal timings for intersections as directed by the Department. Although task order is per intersection, cost per intersection shall be categorized by systems with (0-5) (6-10) and (11 plus) intersections.

<table>
<thead>
<tr>
<th>#</th>
<th>Project Tasks</th>
<th>Task Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Management</td>
<td>The CONSULTANT will manage the project to conform to the SCDOT requirements for monitoring and controlling the engineering budget, project schedule and invoicing procedures. The CONSULTANT shall provide project management for all of the tasks detailed below including the submission of monthly invoices and progress reports to the SCDOT. The CONSULTANT will assign a Project Manager to serve as the primary contact for communications with the SCDOT. Add identify and review with SCDOT staff, project issues, expectations, goals, and objectives for each task orders. Up to 3 meetings may be required, including kick-off meeting.</td>
</tr>
</tbody>
</table>
| 2 | Traffic Counts | CONSULTANT will provide to SCDOT a Memo containing the following proposed information:
1. Proposed Count Locations for 24 hour directional counts, up to 4 per signal system.
2. Proposed Count Locations and schedule for 8 hour turning movement counts, up to 2 per signal.
Counts will be ordered after approval of proposed locations and time frames has been received from SCDOT. |
| 3 | Methodology report | The Consultant will develop a traffic signal Methodology Report containing the following data:
1. Field Data Collection Methodology.
2. Traffic Flow observations made in the field.
3. Specific local conditions or preferences for timing development.
4. Methodology for calculating pedestrian and vehicular clearance intervals if desired.
5. Signal Analysis software to be used.
| 4 | Inventory & data collection report | The CONSULTANT will create a Data collection report consisting of the following data (can be submitted electronically):
1. Directional count data in graphical and tabular format.
2. Intersection sketches.
3. Current District/Municipality timing preferences.
4. Existing Count data.*
5. Existing timing data.* (databases and/or Synchro files)
* When available, existing timings and/or count data will be provided to the CONSULTANT to aid in timing effort. |
| 5 | Timing Plan Development | Preliminary Assessment: Prior to beginning the development of the signal timing plans, the CONSULTANT will evaluate the operations of all project intersections to determine any operational and/or geometric changes that would benefit the overall system operations. Additionally, the assessment will also include preliminary recommendations and cycle lengths. The preliminary assessment will be submitted in memo form and will consist of the following:
Intersection inventory diagrams |

2. Proposed number of timing plans up to 6.
2. Proposed cycle lengths.
3. Proposed Clearance Intervals.
4. Recommended time-of-day for each plan's time periods.
5. Recommended day-of-week for each plan's time periods.
6. Master Controller databases (if applicable)
7. Local Controller Timing Sheets.
9. Turning movement counts
10. Preliminary Assessment Include evaluation of existing equipment and plan testing process
11. Development of timing plans will begin after the approval of proposed clearance intervals has been received from SCDOT.
12. Consultant will make recommendations concerning what type signal system would be most effective - TD, responsive or Adaptive.
Development of Base System Timing Plans: The CONSULTANT will prepare timing plans for systems using SYNCHRO version 7.0 and develop up to six (6) separate time-of-day plans. The CONSULTANT will submit the Synchro output sheet's, the Synchro files, and the timing plan development methodology for SCDOT review and approval. Time space diagrams will be developed in Synchro and submitted with the timing plans for review. Based on the results of SCDOT's review, the CONSULTANT will finalize the Synchro timings. Once finalized, the CONSULTANT will export the files for importing into ATMS for SCDOT maintained signals.

Implementation and Fine Tuning of Signal Timing Plans

Proposed timing plans will be loaded and tested in the signal shop by the District signal shop or local government signal maintainer with the Consultant. After successful testing a time shall be established for field implementation; Consultant shall be present in the field during field implementation. The CONSULTANT will begin to fine tune each system for each time-of-day plan. During the fine tuning, the CONSULTANT will make recommendations for timing adjustments that will be made in the controllers by the District or local government signal staff.

Figure 6-10
Signal Re-timing Scope of Services
Roadway Improvement Projects -
- **Construction Letting - Design-Bid-Build** - Signal construction can occur within roadway improvement projects. The *Signal Letting Package* includes signal plans, pay items and estimated quantities and Signal Specifications should be included in the plan set for Design, Bid, Build project.
- **Request for Proposal Selection/Award- Design-Build** - For Design-Build projects, Design-Build Signal Scope (See Chapter 4) should be included in Design-Build RFP that detail all requirements and standards addressing the signal design and construction. Design-Build Team consists of Construction and Engineering companies to provide a turn-key project.

Resurfacing Projects -
Signal construction, consisting mainly of detection replacement and temporary detection occurs in Resurfacing Projects. Signal specifications for Resurfacing Projects should be included to detail all requirements for maintaining signal operations and detection during the resurfacing project.
- Temporary detection will be required for signals operating an advanced signal system.
- For resurfacing projects on roadways with high volumes (see Traffic Signal Special Provisions - Resurfacing), the contractor shall have two weeks to replace detection or temporary detection will be required.
- For resurfacing projects, where milling operations result in damage to detection on low volume roadways the contractor shall coordinate with the District Traffic Engineer to determine the schedule for detection replacement.

Encroachment Permit Projects -
Signal construction can occur within encroachment permit projects, funded by locals or private entities. SCDOT staff shall review signal plans, quantities and specifications to ensure that signal construction documents meet all SCDOT standards.

Local governments and/or private developers may perform signal work under an approved encroachment permit. The encroachment permit should include the following language:

The below special provisions are included for all permits that require signal work:
1. Contractor shall notify SCDOT District Signal Shop 48 hours prior to the start of signal work; SCDOT shall review and have approval authority concerning the contractor schedule. No signal work shall commence without SCDOT signal inspectors present.
2. Contractor shall ensure vehicle detection is maintained operational during signal work. Any disruption of or damage to existing traffic signal loops shall be repaired immediately. Coordinate with SCDOT District Signal Shop for specific requirements.
3. Contractor shall return existing signal equipment that is removed/no longer necessary as a result of the proposed improvements to SCDOT District Signal Shop. Permittee is responsible for ensuring the equipment is returned to SCDOT.
4. Equipment and materials for traffic signal equipment shall be in accordance with SCDOT Traffic Signal Material Specifications, latest edition. Invoices for all equipment and materials shall be provided to SCDOT.
5. Installation procedures and requirements for traffic signals shall be in accordance with SCDOT Traffic Signal Supplemental Technical Specifications, latest edition.
6. Contractor shall coordinate with existing utilities with regards to pole and conduit locations. The Contractor shall be responsible for verifying the location of existing utilities both horizontal and vertical.
7. SCDOT shall review and approve all traffic signal equipment catalog cuts and shop drawings.
8. Contractor shall have staff with minimum IMSA Level II Technician on site at all times during construction.
9. All traffic signal costs for design, equipment and installation are the responsibility of the permittee. Application for electric service shall be in accordance with SCDOT Engineering Directive T2. SCDOT will generally take over ongoing operation and maintenance of the signal upon final inspection and acceptance.
10. Permittee shall provide electronic copies of both the Synchro traffic signal analysis and the CADD plan showing the final traffic signal design to the DTE office, as well as a sealed PDF.
11. Contractor shall maintain and repair any damage to signals, in accordance with General Provisions in SCDOT Traffic Signal Supplemental Technical Specifications, latest edition. Penalties will be applied if contractor does not comply with these requirements.
12. Integration of the controller and cabinet will generally be performed by SCDOT or local governmental
agency maintaining the signal. SCDOT reserves the right to require the permittee to perform integration in accordance with manufacturers standards. Permittee shall coordinate with District Signal Supervisor 2 weeks prior to cabinet installation to ensure scheduling is not an issue.

14. If signal work is within Railroad Right of Way, signal installation shall be in accordance with SCDOT Traffic Signals @ Railroads Special Provisions. All costs associated with Railroad permits, flagging, insurance or improvements/ construction is the responsibility of the Permittee.

Signal Improvement Projects

- **Construction Letting - Design-Bid-Build** - These projects consist only of signal improvements and possibly sidewalk, curb ramp median or island improvements (to accommodate pedestrian treatments). Signal projects are awarded to a contractor based on competitively low bid process. Awarded work consists of a contractual relationship between SCDOT and licensed contractor in which contractor is responsible for the construction of new signals or improvements to signals, based on the contract documents.

 The *Traffic Signal Letting Package* includes signal plans, pay items, estimated quantities and Signal Specifications. See more information on the Traffic Signal Letting Package in Chapter 4.

- **Work Order Assignment** - SCDOT has a fixed price services contract in place for signal construction/maintenance activities. The contacts can be found online at [Procurement Services](#) using SCEIS search engine with reference ‘traffic signal’. Over 250 pay items are available to provide adequate resources for signal work. Over 10 signal contractors are available to perform signal work. Work should be assigned and managed in accordance with TG 35 Business Rules for District Traffic Signal Shop Operations.

- **In house Signal Construction** - Some district and local government signal maintainers perform signal construction activities rather than using a service contract. The benefit of staff performing construction is that they stay current on installation and construction methods and in many cases, available funding can accomplish more work. The cons are that existing staffing limits the amount of crews available to perform maintenance, inspection and construction. If a signal emergency occurs, the signal crew must leave the construction activity and attend to the emergency. In addition, all traffic control is the responsibility of SCDOT.
Construction Letting Award
Bid Reviews
Bids are reviewed by SCDOT Construction office and the Traffic Signal Project Manager for consistency with SCDOT cost estimates. If bid prices are reasonable, a recommendation is made to award the project to the lowest responsible bidder.

Award
The Construction staff notifies the contractor of the award. The contracts are managed out of the District Construction Office with an assigned construction manager. The awarded contractor is responsible for contacting the District construction office to set up the Pre-Construction Conference. Until this conference is held, a Notice to Proceed (NTP) cannot be given. The Length of the Contract begins upon award, so it is vital that the contractor coordinates with the SCDOT construction manager as soon as possible to avoid running out of time on the project.

Pre-Construction Conference
The Pre-Construction Conference includes the following individuals:
• Contractor,
• SCDOT district personnel (construction, traffic, utility, maintenance),
• SCDOT HQ Signal Project Manager,
• Affected utility company representatives

The agenda for these meeting include discussion of the following:
• Schedule
• Traffic Control Plan
• Sub-Contractor paperwork for approval
• Material / Equipment Submittals/ Concrete Mix Design
 Any signal equipment provided by the contractor must be listed on the QPL. If the signal equipment is not on the QPL, submittals must meet SCDOT specifications.

EEO Policy and Employee wage interviews / Certified Payroll
• Contact information for emergency signal maintenance
• Damage Claims
• Appropriate licensing for contractor and for working within certain municipalities
• Notice to Proceed (NTP) date

Other items that may be discussed:
• General description of work
• Utility Coordination
• Point of contacts for Inspection
• Testing Requirements
 • Concrete
 • Fiber OTDR
• Invoicing / Quantities
Qualified Signal Contractors
The qualifications for signal contractors is listed in 675.0 General Provisions. Links to standard licensing entities are below:

- NEMA / NEC / NESC / IES/ ANSI
- IMSA
- SC Contractors Licensing

In addition, all SCDOT contractors are required to complete an advanced work zone traffic control training, in accordance with Work Zone Traffic Control Training Guidelines for Contractors.

Currently, SCDOT requires IMSA (International Municipal Signal Association) Level 2 Signal Certification for all signal maintainers and signal contractors. SCDOT has plans to provide a training course for Signal Construction and Signal Construction Inspection, specific to SCDOT specifications and construction methods. This training course will be administered by an outside entity. This training will be available for SCDOT employees, local government signal maintainers, consultants and contractors.

Typical Construction Process
SCDOT cannot direct the signal contractor concerning means and methods, however, below is the typical order of signal construction:

- Order equipment, materials
- Mark utilities, right of way, get power turn-on scheduled/determine location for disconnect
- Install curb ramps if applicable
- Install pole foundations, cabinet foundations
- Install steel poles
- Install detection
- Install conduit, junction boxes (ensure sufficient for fiber, ped poles, loops)
- Install meter and cabinet
- Run Wire for detection
 - Underground - In conduit
 - Overhead - On messenger
- Install span wire, signal heads (bagged), overhead sign brackets
- Install pedestrian poles, heads, buttons
- Run wire for signal heads, install signs, ped heads, ped buttons
- Install pavement markings

For new signal installations
- Place the signal in flashing mode and flash for at least 3 and not more than 7 days prior to full signal operation. In the event where signalized intersections are replaced with new equipment, there is no mandatory flash period required.
- For new signals erect “Signal Ahead” signs (MUTCD W3-3) on all approaches with a “NEW” plaque above the signs on the day the signal is to be placed in stop and go operation,. Supplement the “Signal Ahead” signs with orange flags to draw attention to the signs. Remove the “Stop” signs from the side street and “Stop Ahead” signs if applicable, when the signal is placed into operation.
- Place the signal into operation on a normal workday, after the morning peak hour and prior to the afternoon peak hour.
- Remove the flags or flashers and the “NEW” plaques approximately two months after the signal is placed in operation.

Maintaining Signal Operation during Construction
Detection
In accordance with the General Provisions in the Traffic Signal Supplemental Technical Specifications, detection should be maintained as incidental for construction projects involving traffic signals. Any damage to detection shall be repaired or temporary detection should be installed. Lane shifts, closures that impact detection should be planned for by revising signal timings and installing temporary detection.
Communications
Signal communications damaged during construction shall be repaired immediately in accordance with the Traffic Signal Supplemental Technical Specifications, General Provisions.

Signal Inspection
SCDOT Construction staff performs construction management and inspection services for all let projects. A Construction Engineering Services consultant may be obtained to perform this service. Construction staff coordinates with SCDOT Signal Maintenance staff to obtain their special inspection services for all signal construction. Local Governments maintaining signals for SCDOT may also perform signal inspection services. SCDOT Signal Maintenance staff or Local Government Signal Maintenance staff is responsible for inspecting signal construction utilizing the Fixed Price On Call Signal Services contracts and Encroachment Permit projects.

An example Punch List is shown in Figure 7-1.

Common Construction Mistakes
- Splicing in conduit – not allowed
- SCDOT requires continuous electrical cable runs between
 - Signal heads and cabinet
 - Pedestrian heads and cabinet
 - Splice box @ loop and cabinet
 - Splice 1 conductor loop wires to 4/8 conductor electric cable in splice box
 - Pedestrian Buttons and cabinet
 - Grounding
 - Signal poles, cabinet, electric service, pedestrian poles are not bonded for one grounding system
 - Ground rod is missing (not installed)
 - Grounds are not bonded properly
 - Signal Heads
 - Proper Aiming
 - Tightening of signal supports
 - Signal Pole
 - Missing handhole covers
 - Conduit
 - Not enough provided
Contractor Review Rating
Signal inspectors should report signal contractor performance based on the following criteria:
(For Projects with SWKC Date ON or AFTER 1/01/08)
1. Project Closeout Activities
2. Public Relations
3. Rework
4. EEO, Davis Bacon Act and DBE compliance
5. Coordination and Cooperation with other Contractor(s) Utilities, and Railroads

Signal Flashing Operations during Construction Activities

Standard:
The MUTCD (Section 6F.07 Regulatory Sign Applications) requires that traffic signals be placed in flashing operation when construction personnel are flagging the intersection as part of construction activities. The South Carolina Code of Laws (Section 56-5-90) stipulates that only law enforcement can supersede signal control of traffic.

Policy:
When construction personnel are controlling traffic flow through signalized intersections with flagging operations, the Resident Construction Office overseeing the work shall be responsible for ensuring the intersection traffic signal is placed in flash and returned to normal operation at the conclusion of flagging operations. At no time is the signal to be left unattended in flash mode. The person responsible for placing the signal in flash must remain in the activity area until the signal has been returned to normal operation.

Procedure:
The Resident Construction Office overseeing the construction activities shall be responsible for ensuring the intersection traffic signal is placed in flash and returned to normal operations at the conclusion of flagging operations through the intersection. See Standard Drawings Section 610. One of following procedures shall be used by the District Office to comply with the standard and policy:

Option 1: Contractor Pay Item
Projects with activities that will impact signal operation and loop detection during the construction operation will have a pay item of (6885993 - Temporary Adjustment of Traffic Signal Equipment - EACH) included. Under this pay item, the signal contractor or subcontractor will place the signal in flash according to requirements and under the oversight of the Resident or SCDOT Signal Technician. The contractor will return the intersection to normal operation at the conclusion of flagging operations through the intersection.

Option 2: SCDOT Signal Staff
The SCDOT signal shop will be notified of the project work and a SCDOT Signal Technician will oversee and conduct the flashing operations in coordination with the Contractor.

Option 3: Resident Construction Office
The Resident Construction Office overseeing the project will use trained SCDOT construction staff to place the intersection in flash and return the intersection to normal operation at the conclusion of flagging operations through the intersection. The training requirements are detailed below:

SCDOT Construction Staff Training Requirements:
Designated inspectors will be trained by the District Traffic Signal Shop. Training will include the proper means to place a signal in flash and return to normal operation as well as procedures to follow in the event a problem is encountered. Training will last no more than two hours. The appropriate Resident Construction Office will maintain the keys to the traffic signal police panels. Only those personnel who have been trained to operate the traffic signal will be permitted to check out the traffic signal keys and perform this operation.

Documentation required for all options:
The Resident Construction Office will notify the District Traffic Signal Shop in advance of plans to place intersections in flash and provide the District Traffic Signal Shop with contact information for the responsible party. The Resident Construction Office will be required to keep a log of intersections placed in flash for construction activities to include the time placed in flash, time returned to normal operation and responsible party. This log shall be e-mailed to the Traffic Signal Shop Supervisor at the end of each day during which signals have been placed in flash during construction activities.
<table>
<thead>
<tr>
<th>NO</th>
<th>YES</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>2</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>3</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>4</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>5</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>6</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>7</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>8</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>9</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>10</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>11</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>12</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>13</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>14</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>15</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>16</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>17</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>18</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>19</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>20</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>21</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>22</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>23</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>24</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>25</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>26</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>27</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>28</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>29</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>30</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>31</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>32</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>33</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>34</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>35</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>36</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>37</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>38</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>39</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>40</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>41</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>42</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>43</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>44</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>45</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>46</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>47</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>48</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>49</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>50</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>51</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>52</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

Figure 7-1

SCDOT Example Punch List Form
Construction Project Completion / Closure

The District Construction Project Manager initiates the closure of the construction project upon substantial completion and acceptance of the project.

Fixed price On Call Signal Services Contract

The Fixed Price On Call Signal Services Contract is a SCDOT procurement contract with over 250 pay items. For work estimated at less than $50,000, District signal staff selects a contractor on a rotation basis from a list of contractors who have signed on to work in that District. For work estimated to be over $50,000, District signal staff contacts 3 contractors to provide their best 'bid' on the work. Selection of the contractor is based on availability and cost.

Mobilization and Traffic Control is a percent of the total cost of the work order. Pay items for Directional boring, fiber optic cable installation, concrete and asphalt work as well as marking and lighting work are included. Typically these pay items are provided by sub-contractors to the signal contractor.

The Fixed Price On Call Signal Services Contract is not only useful for planned signal improvements, but is also vital in performing emergency repairs and maintenance work on traffic signals.

State On-Call Traffic Signal Cost Estimate Sheet

<table>
<thead>
<tr>
<th>CONTRACT ITEM</th>
<th>CONTRACT LIMIT</th>
<th>UNIT</th>
<th>UNIT COST</th>
<th>TOTAL</th>
<th>PAY ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>LF</td>
<td>$10.00</td>
<td>$20.00</td>
<td>FINISH INSTALL AARM PANELS</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>LF</td>
<td>$12.00</td>
<td>$24.00</td>
<td>FINISH INSTALL AARM SUPPORTS</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>LF</td>
<td>$14.00</td>
<td>$28.00</td>
<td>FINISH INSTALL AARM BOX</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>LF</td>
<td>$16.00</td>
<td>$32.00</td>
<td>FINISH INSTALL AARM SUPPORTS</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>LF</td>
<td>$18.00</td>
<td>$36.00</td>
<td>FINISH INSTALL AARM BOX</td>
</tr>
</tbody>
</table>

Mobilization and Traffic Control is a percent of the total cost of the work order. Pay items for Directional boring, fiber optic cable installation, concrete and asphalt work as well as marking and lighting work are included.

Typically these pay items are provided by sub-contractors to the signal contractor.

The Fixed Price On Call Signal Services Contract is not only useful for planned signal improvements, but is also vital in performing emergency repairs and maintenance work on traffic signals.

Figure 7-2a

On Call Pricing (page 1)
Figure 7-2b
On Call Pricing (page 2)
SCDOT TRAFFIC SIGNAL MANUAL - CHAPTER 7

SIGNAL CONSTRUCTION

7-11 STEEL POLE WITH MAST ARM

<table>
<thead>
<tr>
<th>LINE</th>
<th>DESCRIPTION</th>
<th>PAY ITEM</th>
<th>UNIT</th>
<th>ESTIMATED QUANTITY</th>
<th>UNIT</th>
<th>T ZONE</th>
<th>TOTAL</th>
<th>BID UNIT COST</th>
<th>OPTIMAL UNIT</th>
<th>OPTIMAL QUANTITY</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Footing, Install All Vehicle Traffic Control Head Mounting Assembly For Mast Arm</td>
<td>EA</td>
<td>1.000</td>
<td>$100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Mast Arm</td>
<td>EA</td>
<td>1.000</td>
<td>$100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Mast Arm, Steel, 10’</td>
<td>EA</td>
<td>1.000</td>
<td>$70.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Mast Arm, Steel, 20’</td>
<td>EA</td>
<td>1.000</td>
<td>$70.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Mast Arm, Steel, 30’</td>
<td>EA</td>
<td>1.000</td>
<td>$70.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Mast Arm, Steel, 40’</td>
<td>EA</td>
<td>1.000</td>
<td>$70.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Mast Arm, Steel, 50’</td>
<td>EA</td>
<td>1.000</td>
<td>$70.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7-3 TRAFFIC SIGNAL SYSTEM TRAINING

7-11 ON CALL PRICING (page 4)

Figure 7-2d

DECEMBER 1, 2018
<table>
<thead>
<tr>
<th>Line</th>
<th>Pay Item</th>
<th>ESTIMATED QUANTITY</th>
<th>Unit</th>
<th>UNIT</th>
<th>CONTRACT</th>
<th>OPTION</th>
<th>OPTION</th>
<th>DESCRIPTION, SPECIFICATION REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>245</td>
<td>EA</td>
<td>$250.00</td>
<td>EA</td>
<td>$250.00</td>
<td>$250.00</td>
<td>$250.00</td>
<td>$250.00</td>
<td>FURNISH & INSTALL SINGLE ALUMINUM LIGHT STANDARD - 35' BREAKAWAY W/ PEN (BOLT LIGHT TO SIGNAL POLES, TOP TENNIS)</td>
</tr>
<tr>
<td>246</td>
<td>EA</td>
<td>$350.00</td>
<td>EA</td>
<td>$350.00</td>
<td>$350.00</td>
<td>$350.00</td>
<td>$350.00</td>
<td>FURNISH & INSTALL 30' ALUMINUM POLE W/ OUTDOOR LIGHTING ENCLOSURE FOR LIGHTING SYSTEM</td>
</tr>
<tr>
<td>247</td>
<td>EA</td>
<td>$350.00</td>
<td>EA</td>
<td>$350.00</td>
<td>$350.00</td>
<td>$350.00</td>
<td>$350.00</td>
<td>FURNISH & INSTALL METAL LIGHTING SYSTEM</td>
</tr>
<tr>
<td>248</td>
<td>EA</td>
<td>$250.00</td>
<td>EA</td>
<td>$250.00</td>
<td>$250.00</td>
<td>$250.00</td>
<td>$250.00</td>
<td>FURNISH 30" PHOTOCELL</td>
</tr>
<tr>
<td>250</td>
<td>LF</td>
<td>$300.00</td>
<td>LF</td>
<td>$300.00</td>
<td>$300.00</td>
<td>$300.00</td>
<td>$300.00</td>
<td>FURNISH 3 INSTALL GROUND ROUGH COPPER WIRE CLAMP</td>
</tr>
</tbody>
</table>

Figure 7-2e

On Call Pricing (page 5)
CHAPTER 8

SIGNAL MAINTENANCE
Traffic Signal Maintenance
Traffic signals can severely limit roadway capacity if they are not properly maintained. Malfunctioning signal equipment typically fail in a manner that provides pre-timed signal phasing designed for congested traffic conditions meaning longer times on both the main street and side street. These fail-safe measures result in unnecessary delays and limited roadway capacity. Proper attention to signal maintenance is vital in ensuring our roadways operate as designed.

There are seven (7) SCDOT Signal Maintenance Shops, one in each SCDOT District. Contact information for the signals shops is below:

<table>
<thead>
<tr>
<th>District 1 Signal Shop</th>
<th>District 5 Signal Shop</th>
</tr>
</thead>
<tbody>
<tr>
<td>803-737-6660</td>
<td>(843) 661-4710</td>
</tr>
<tr>
<td>1408 Shop Rd</td>
<td>3018 East Palmetto St</td>
</tr>
<tr>
<td>Columbia, SC 29201</td>
<td>Florence, SC 29506</td>
</tr>
<tr>
<td>Reports to District Traffic Engineer</td>
<td>Reports to District Traffic Engineer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>District 2 Signal Shop</th>
<th>District 6 Signal Shop</th>
</tr>
</thead>
<tbody>
<tr>
<td>(864) 227-6971</td>
<td>(843) 740-1668</td>
</tr>
<tr>
<td>510 W. Alexander Avenue</td>
<td>6355 Fain Blvd, Bldg E</td>
</tr>
<tr>
<td>Greenwood, SC 29646</td>
<td>N. Charleston, SC 29406</td>
</tr>
<tr>
<td>Reports to District Traffic Engineer</td>
<td>Reports to District Traffic Engineer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>District 3 Signal Shop</th>
<th>District 7 Signal Shop</th>
</tr>
</thead>
<tbody>
<tr>
<td>(864) 241-1010</td>
<td>(803) 531-6850</td>
</tr>
<tr>
<td>13 Saluda Dam Rd</td>
<td>1724 Charleston Hwy</td>
</tr>
<tr>
<td>Greenville, SC 29611</td>
<td>Orangeburg, SC 29115</td>
</tr>
<tr>
<td>Reports to District Traffic Engineer</td>
<td>Reports to District Mechanical Engineer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>District 4 Signal Shop</th>
</tr>
</thead>
<tbody>
<tr>
<td>(803) 377-4155</td>
</tr>
<tr>
<td>1143 SCDOT Rd</td>
</tr>
<tr>
<td>Chester, SC 29706</td>
</tr>
<tr>
<td>Reports to District Traffic Engineer</td>
</tr>
</tbody>
</table>

Figure 8-1
SCDOT Signal Shop Contact Information
In addition, SCDOT contracts out signal maintenance to local governments under Signal Maintenance Agreements. This program is described later in this chapter, however contact information for the local government signal shops is below:

<table>
<thead>
<tr>
<th>City of Anderson</th>
<th>Town of Mount Pleasant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Works</td>
<td>Transportation Department</td>
</tr>
<tr>
<td>(864) 231-2246</td>
<td>(843) 856-3080</td>
</tr>
<tr>
<td>1100 Southwood Street</td>
<td>100 Ann Edwards Lane</td>
</tr>
<tr>
<td>Anderson, SC 29624</td>
<td>Mount Pleasant, SC 29464</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City of Beaufort</th>
<th>City of Myrtle Beach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Works</td>
<td>Public Works – Traffic Engineering</td>
</tr>
<tr>
<td>(843) 524-2777</td>
<td>(843) 918-2000</td>
</tr>
<tr>
<td>1911 Boundary Street</td>
<td>3210 Mr Joe White Avenue</td>
</tr>
<tr>
<td>Beaufort, SC 29902</td>
<td>Myrtle Beach, SC 29577</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beaufort County</th>
<th>Town of North Augusta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering and...</td>
<td>Engineering and Public Works</td>
</tr>
<tr>
<td>(843) 255-2940</td>
<td>(803) 441-4223</td>
</tr>
<tr>
<td>113 Industrial Village Road</td>
<td>100 Georgia Avenue</td>
</tr>
<tr>
<td>Beaufort, SC 29906</td>
<td>North Augusta, SC 29841</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City of Charleston</th>
<th>City of North Charleston</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic and Transportation</td>
<td>Public Works – Traffic Signal & Signs</td>
</tr>
<tr>
<td>(843) 724-7368</td>
<td>(843) 745-1026</td>
</tr>
<tr>
<td>180 Lockwood Drive, Ste C</td>
<td>5800 Casper Padgett Way</td>
</tr>
<tr>
<td>Charleston, SC 29403</td>
<td>North Charleston, SC 29406</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City of Columbia</th>
<th>City of Rock Hill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Works -Traffic Engineering</td>
<td>Utilities Department</td>
</tr>
<tr>
<td>(803) 545-3850</td>
<td>(803) 329-5500</td>
</tr>
<tr>
<td>2910 Colonial Drive</td>
<td>757 S Anderson Road</td>
</tr>
<tr>
<td>Columbia, SC 29203</td>
<td>Rock Hill, SC 29730</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City of Greenville</th>
<th>City of Spartanburg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Works – Traffic Engineering</td>
<td>Public Services – Traffic Services</td>
</tr>
<tr>
<td>(864) 467-4360</td>
<td>(864) 596-3740</td>
</tr>
<tr>
<td>26 Woods Lake Road</td>
<td>189 John B White Sr. Boulevard</td>
</tr>
<tr>
<td>Greenville, SC 29607</td>
<td>Spartanburg, SC 29306</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Town of Hilton Head Island</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>(843) 341-4600</td>
<td></td>
</tr>
<tr>
<td>1 Town Center Court</td>
<td></td>
</tr>
<tr>
<td>Hilton Head Island, SC 29928</td>
<td></td>
</tr>
</tbody>
</table>

Figure 8-2

Local Government Signal Shop Contact Information

Signal Maintenance activities are classified as Type 4 Signal Activities. Signal maintenance should be performed in accordance with:

- TG 35 – Business Rules for Signal Shops
- SCDOT Maintenance Manual Chapter 38
- Engineering Directive 2 Fiscal and Maintenance Responsibilities for Traffic Signal Installations on the State Highway system
Types of Maintenance

1. **General Maintenance** - Traffic signal maintenance generally includes performing emergency maintenance (trouble calls), addressing signals that are in emergency flash, replacing LED modules, checking and repairing loop by either repairing or re-cutting, maintaining the signal cabinet, and verifying that the wiring is in good operating shape. Trouble calls are documented in a trouble log in the cabinet. Repairing detection is vital to maintain efficient traffic flow.

2. **Extraordinary maintenance** - Extraordinary maintenance is defined as repairs needed beyond ordinary maintenance. Some examples would be a signal knockdown from a tree falling or a vehicle collision or over-height vehicle. When emergency repairs are needed beyond typical maintenance, public safety is the number one goal, and it becomes vital to reinstate signal operation as soon as possible.

3. **Preventive Maintenance** - Preventive maintenance checks are performed at each signal annually. This preventive maintenance form is completed and stored electronically within the signal management tool, TEAMS. The purpose of the check is to clean around and inside the cabinet, to replace the conflict monitor, to ensure the cabinet equipment is working properly and is appropriately inventoried; other items reviewed are the operation of pedestrian treatments, appropriate clearance for signal head, and ensuring the loops are all working properly. Any items that cannot be addressed immediately are noted in TEAMS and are added to a work order list for scheduled repair, or replacements.

 Conflict monitors are removed and replaced with certified tested conflict monitors. SCDOT performs conflict monitor testing to ensure equipment removed is in working order and can be re-used at another location. Typical [SCDOT Conflict Monitoring Testing Procedures](#) are available to authorized signal maintainers in the SCDOT Sharepoint/Traffic Signals webpage.

Signal Maintainers also perform the following duties:

- Signal maintenance staff performs inspection activities for signal construction projects.
- Signal maintenance staff manages field inventory and shop inventory of signal equipment.
- Signal maintenance staff performs maintenance for specialized lighting, such as lighting on roundabouts, bridges, and overhead signing lighting.
- Signal maintenance staff is sometimes tasked with electrical repair duties on SCDOT buildings/grounds.

Standards Committee

The District Signal Superintendents participate in a Standards Committee, meeting quarterly with Traffic Signal and Systems staff from Traffic Engineering at headquarters SCDOT. The purpose of this committee is to develop maintenance, construction and equipment standards and specifications, for statewide compliance. This allows signal maintainers to assist with signal repairs statewide,
Standard Operating Procedure

Communications Maintenance and Implementation

Signal maintainers coordinate with both SCDOT Network Services and SCDOT Traffic Engineering (ITS and Traffic Signals and Systems) to expand the Traffic Signal Communications Network. Funding for implementation and repairs of these Type 3 Signal Activities (See Chapter 3 Communications) is generally from the Statewide Traffic Signal Improvement funding source. These projects are managed by the Traffic Signal and Systems staff, however the field work is managed by the District Traffic Engineers and Signal maintainers. Signal maintainers are also responsible for maintaining communications to the traffic signals.

Fiscal Responsibility for Signal Maintenance

SCDOT is responsible for maintenance costs for all traffic signals and flashing beacons on the state's highway system unless noted otherwise in an agreement (encroachment permit) with a local government or other entity, or as noted below.

School Limit Sign Flashing Beacons

- SCDOT will maintain approved flashing beacons installed on SCDOT right of way. It is permissible for school facilities to pay electrical costs for power. Otherwise SCDOT will pay electrical charges
- Equipment for school speed limit sign beacons, including signs, will be paid for by the requesting entity and installed under encroachment permit. Maintenance of equipment on SCDOT right-of-way will be provided by the Department unless within the limits of a local government participating in the signal maintenance agreement program.
- Solar flashers are typically preferred for school speed limit beacons, however, if the flashers are powered from the school facility, the school will pay electric charges
Emergency Traffic Signals and Flashing Beacons at Fire Stations.
 a. All costs relating to emergency traffic signals and flashing beacons for fire stations will be the responsibility of the fire department or governmental agency that funds the fire department
 b. SCDOT or local government SMA partner will maintain these signals.
 c. If preemption is needed for a signal at an intersection in close proximity to the fire station, the fire station or jurisdictional body is responsible for costs to install the interconnect from the fire station to the traffic signal and costs to install and maintain the switching mechanism in the fire station.

Active Railroad Warning Devices – Railroad companies are responsible for all maintenance activities and costs for maintaining railroad devices.

Signal Maintenance Agreements
SCDOT HQ Traffic Signal and Systems unit administers a Signal Maintenance Agreement program in which qualified local governments are paid by SCDOT to maintain traffic signals and flashing beacons including school flashers within and sometimes adjacent to their jurisdictions. Agreements are developed in which the local governments certify they are able to perform the necessary work to maintain traffic signals to Department standards. The signal maintenance agreements are for day-to-day maintenance of SCDOT signals. SCDOT pays a set rate for routine maintenance per signal per year, based on the device type. Additional payments are established based on the local governments performing engineering and/or operations functions. Emergency repairs are part of routine maintenance however any large equipment purchases due to emergency repairs should be reimbursed by SCDOT in addition to the set routine maintenance payment. Reimbursements for equipment and loop repair are provided based on a set percentage per base reimbursement rate. If equipment replacements exceed this amount, the local government should obtain direction and guidance from the District Traffic Engineer to ensure signals are operational.

Work requiring SCDOT review and approval
Local governments that participate in the signal maintenance agreement program must obtain approval from the District Traffic Engineer prior to installing traffic signals and flashing beacons including school flashing beacons.

If the local government is reimbursed for engineering, the local government must submit the appropriate engineering study to the District Traffic Engineer that supports the request for new signals/flashers or revisions to signals.

If approved, there are several methods to install or revise the signal or flasher:

• The local government can install the new signal or flasher and SCDOT will reimburse the local government for the installation of equipment on SCDOT right-of-way, upon receipt of an invoice of materials/equipment. The invoice should be submitted to the District Traffic Engineer for reimbursement. SCDOT will not reimburse beyond the cost of labor and/or equipment on state contract. In addition, SCDOT is not obligated to reimburse the local government for any equipment that does not meet SCDOT specifications or for any non-standard signal equipment (see Chapter 5 Equipment).
• The local government may request SCDOT to install the new signal or flasher. This work will be performed by SCDOT forces or contract labor based on SCDOT’s schedule and budget capabilities.
The new signal or flasher will be added to the list of signals in the Signal Maintenance Agreement. Maintenance and electric current costs will be paid in accordance with the agreement. If signals or flasher electrical costs are paid by others, SCDOT will not reimburse for said electrical costs.

Signal Upgrades/Replacements
Local governments should submit a prioritized list of signals to be included in the annual Signal Upgrade letting for that district.

Detection and Equipment Funding
Any malfunctioning detection should be repaired as soon as possible. These repairs can be performed by the local government or the local government may request SCDOT to perform the work. SCDOT will reimburse for the cost of these repairs using the Signal Maintenance Agreement funding, up to the allotted amount. SCDOT will furnish or reimburse the local government for spare equipment as defined in the agreement as budgets permit. If the local government wishes to procure equipment other than what is offered on the department’s state contract, reimbursement can be obtained up to the standard equipment rate if procured in accordance with SCDOT approved procurement methods.

SCDOT reserves the right to provide standard equipment to the local government in lieu of reimbursement for non-standard equipment. SCDOT is not obligated to reimburse the local government for purchases of non-standard equipment if prior approval has not been obtained. If the non-standard equipment violates any SCDOT policy, the SCDOT reserves the right to instruct that the equipment be removed and/or replaced at the expense of the local government. SCDOT also reserves the right to replace signal cabinets, controllers, and/or software at SCDOT traffic signals if deemed in the best public interest by SCDOT.

Signal Operations
Local governments must obtain SCDOT approval to install new signal phases or to revise the phasing operation of the signal. Occasional modifications to signal timing operations is permissible to address varying traffic conditions, however major signal system revisions should be reviewed by the local government’s Traffic Engineer or SCDOT prior to implementation.

Flashing Operation
Traffic signals should remain in normal stop and go operation. Exceptions to this may occur if law enforcement personnel are directing traffic for special or emergency conditions. The signal may also be placed in flashing operation when construction/maintenance personnel are directing traffic due to construction or signal maintenance activities. The signal may go into emergency flash due to malfunction, power surges or restarting after an electrical outage. Signal maintenance staff should place the signal back into normal operation as soon as feasible. SCDOT does not recommend the use of Late Night Flash (LNF) operation as a method to reduce delay at signalized intersections during late night hours. The signal timings and/or equipment settings should be
adjusted in a manner that would reduce delay during periods of low volume.

- Implement a late night timing plan with a reasonably low cycle length
- Install pedestrian push buttons and reduce the minimum green values.
- Install or repair loop detection (for pre-timed or semi-actuated signals) and remove the delay value from the loop detectors at night.

The implementation of one or all of these options will allow the signal to operate on a much shorter cycle length and will reduce delay on the side streets.

If implementing these options is not feasible or is unsuccessful, either due to limitations on funding or controller capabilities, the use of LNF operation may be considered if an engineering study indicates the safety of the intersection is not compromised. At a minimum, this study should include the following information:

- Traffic volumes for each approach recorded at 15-minute intervals for a period of 24 hours. If there are protected left turn movements and/or if right turns are observed to carry most of the volume for the minor street, they may need to be counted separately from the thru volumes. Separate counts are needed for weekday and weekend studies. Weekday studies should be conducted between Monday PM and Thursday AM. Weekend studies should be conducted between Friday PM and Sunday AM.
- Observations of vehicle classifications for each movement including cars, trucks, public transit vehicles, pedestrians, and bicyclists.
- Posted speed limit or 85th percentile speed for each approach.
- Condition diagram showing intersection characteristics such as geometrics, channelization, grades, sight-distance restrictions, transit stops and routes, parking conditions, pavement markings, roadway lighting, driveways, railroad crossings, and adjacent land use (particularly businesses that are open late within a quarter-mile of the intersection and on the opposite side of the major street from a neighborhood).
- Collision diagram showing crash type, location, movement direction, severity, weather, time of day, date, and day of week for at least one year.
- Proposed hours of flashing operation.

LNF operation is not recommended if any of the following apply:

- Posted speed limit is higher than 35mph for any approach.
- More than two approach lanes exist on each leg of the major route.
- More than eight total approach lanes exist for all legs of the intersection (including left turn lanes).
- Large number of trucks exist on the minor street (or in protected left turn movements).
- The two-way traffic volume for the major street exceeds 500vph.
- The highest volume approach for the minor street volume exceeds 150vph.
- Sight distance restrictions exist.

The study should include all of the aforementioned information and should meet all of the recommendations. Any exception to the recommendations included here should be noted in the study with justification for the exception. If approved, LNF should be used no less than two consecutive hours, preferably four. If bars or other late-night establishments are located nearby the LNF operation should not be used until at least one hour after closing time. LNF is not required to be used every night of the week and can be used on weekdays, weekends, or both. LNF operation should be monitored and revised if safety issues are noted.

Electric Current Costs

Electric bills for signal electric costs for SCDOT maintained signals are generally sent to and paid out of the local SCDOT Maintenance office budget. SCDOT generally reimburses local governments participating in the signal maintenance agreement program for electric current costs. Some entities pay electrical costs based upon agreements (encroachment permits) with SCDOT, such as for signals or beacons at fire stations, schools, or private driveways.
CHAPTER 9

RAILROAD PREEMPTION

SCDOT
Background:
When at grade railroad crossings and traffic signals are in close proximity, it is imperative that they work together to discourage motorists from stopping on the tracks. Therefore, these design standards have been written to assist the engineer in developing and maintaining traffic signals preempted by active railroad warning devices. In addition, guidance is given to assist the engineer in making a decision concerning the need for interconnection, based on nationally accepted practice. Ultimately, engineering judgement should be used concerning design and implementation.

Preemption
Preemption ‘interrupts’ normal signal operation to clear the track area prior to train arrival at the intersection. During activation of the railroad warning devices, the signal enters into this special railroad preemption operation utilizing a direction wire connection between the railroad devices the signal cabinet. The traffic signal remains in railroad preemption operation until the train deactivates the railroad warning devices. The traffic signal exits railroad preemption operation and resumes normal operation.

Review:
When interconnection between active railroad warning devices and a traffic signal is required, a signal plan shall be submitted by the District Traffic Engineer or other qualified engineer to the Director of Traffic Engineering for review and approval. The Director of Traffic Engineering will review and approve the signal plan and coordinate with the railroad company to implement the needed changes. A preemption agreement may be developed to detail the needed work and the responsibilities of the parties involved, and provide a cost estimate for the work.

Funding:
Typically, Railroad Companies required SCDOT to pay for Railroad Warning Device installations and upgrades. Railroad Companies also invoice SCDOT for processing Preemption Agreements including engineering and installation fees. Funding for this work should be obtained from projects where these improvements are required as part of the scope. Examples of these projects include Railroad Upgrades, roadway construction, encroachment permit, local option sales tax projects. If project funds are not available, other funding sources are signal maintenance funds or signal upgrade/installation funds.
Railroad Companies:
There are several railroad companies operating in South Carolina. Each railroad company has a different process for implementing and installing interconnection. Care should be taken to contact the appropriate railroad company to ensure that the proper procedures are met when requesting interconnection. In addition, each railroad company has different permitting requirements when working within the railroad right of way. Generally, Insurance, right of entry permits, and or flagging operations are required. The railroad may require plans, details and elevations to detail the proximity between the traffic signal equipment and railroad tracks and devices. Overhead spans are not usually permitted. At locations where the railroad track has an existing span over the track, the railroad company may not permit replacement of the span. Underground conduits are preferred and boring under the tracks is generally performed by the railroad company under agreement with SCDOT, where SCDOT pays the railroad for any work required and agreed upon by both parties.

References:
Below are other sources of information for at grade railroad crossings.
- Preemption of Traffic Signals near Railroad Crossings - ITE 2006

Conditions for Interconnection
Below are the items to consider when determining if interconnection is needed at new or existing traffic signals:
- Rail crossing is typically within 200’ of signalized highway intersection (Not limited to 200’, but rarely greater than 500’)
- Queuing regularly occurs within Track Clearance Distance
 Regularly is defined as the queuing that occurs within the TCD during normal peak traffic times. This can be determined by observation or see “Design Guidelines for Railroad Preemption at Signalized Intersections” ITE Journal, February 1997, for estimating queues.
- Active railroad warning devices are existing or planned
- Train speeds exceed 20 mph

Conduct Field Review
Obtaining geometric information concerning proximity of the railroad track with adjacent intersection, signing, marking and signals is vital in designing railroad preemption operation. Engineers should review location in field to obtain the following information:
- Existing signs and markings, utilities & signal components
- Roadway Geometry such as travel lanes and uses
- Existing/proposed active railroad warning devices (gates, flashers), cabana location, maximum train speed, train activity, activation distance
- Measure Clear Storage Distance (CSD) and Track Clearance Distance (TCD) as indicated below:

 The Track Clearance Distance (TCD) is measured from 6’ downstream of the rail to 12’ upstream from the center line of the rail. The national terminology indicates a couple of other areas that could be the measuring point, upstream of the rail, including the railroad stop bar on the track approach or the railroad-warning device. The Department typically uses the 6’ and 12’ measurement. If the track and the roadway are not perpendicular, care should be taken to measure the longest distance, using either the edge of pavement or the center line, depending on the skew. The longest TCD should be measured for the track clearance calculation.

 The Clear Storage Distance (CSD) is measured from the edge of the TCD (6’ from the rail) to the stop bar or the normal stopping point of the adjacent signalized intersection.
If the track and the roadway are not perpendicular, care should be taken to measure the shortest distance, using either the edge of pavement or the center line, depending on the skew. The shortest CSD should be measured for the track clearance calculation.

Figure 9-1 is provided for assistance in determining the appropriate measurement of the TCD and the CSD.

Determine Storage Availability

Determine if adequate storage is available in the CSD for the vehicles. If not, provide stop bar in advance of track with detection device for those vehicles unable to store in CSD without overhanging into the TCD area. When CSD is severely limited, consider stopping all vehicles in advance of track, using “Stop Here on Red” signs.

Determine Need for Presignals

Pre-signals are signal heads used as supplemental signal displays that display red indications during preemption to prevent vehicles from entering the TCD. Below are criteria to determine if pre-signals are a good tool to use.

- If railroad gates are not present or planned, and the geometric design of the intersection allows vehicles to store between the intersection and the at-grade crossing (within the CSD), consider using a pre-signal.
- If advanced preemption (not simultaneous preemption) is provided, consider using pre-signals to control traffic since railroad warning devices will not be activated until after the preemption clear sequence has begun.
- If timed overlap is used, pre signals would be needed even if gates are present.

If pre-signals are used:

- Presignals should display two red indications per traffic approach.
- A stop bar in advance of the grade crossing should be provided when using pre signals.
Typically, pre-signals are placed on the approach side of the crossing and care should be taken to prevent their placement from blocking the visibility of any overhead railroad flashers. Pre-signals are supplemental traffic control equipment, to reinforce the message the railroad's active warning devices are displaying. As such, they are targeted to motorists approaching the rail/grade crossing. It is desirable to place the pre-signals where they would be visible from the stop bar on the upstream side of the crossing. However in many cases, the appropriate stopping point for motorists waiting on a train to clear the track is too close to the crossing to be able to obtain 40' between pre-signals and stop bar. The engineer should attempt to obtain the maximum distance between the pre-signal and stop bar possible, not to exceed a reasonable stopping distance for motorists approaching the grade crossing.

RYG Pre-signal

One type of pre-signal is the “R, Y, G” signal, used to operate a timed overlap that “clears” the TCD during both normal and preempted signal operation. A timed overlap (see Figure 9-2) extends the green time on the same approach, at the downstream intersection signal heads, while the “pre-signal” (upstream in advance of the railroad crossing) heads clear to yellow and red. The green is typically extended 3 to 5 seconds, based on the TCD & CSD distance. During preemption, the green time may be extended for a greater period of time than during normal operation, if necessary.

These are often used when the CSD is inadequate to store vehicles, but where it is not practical to stop all vehicles in advance of the crossing. These are also used when a frontage road (parallel and adjacent to the track on the upstream side of the crossing) exists to prevent blocking of the frontage road.

These pre-signals may be used regardless of the type of active railroad warning device and should be designed to operate effectively during both normal operation and preempted operation.

RYY Pre-signal

Another type of pre-signal is the “R, Y, Y” signal, where the bottom section is an 8” section yellow, while the top and middle sections are 12” red and yellow sections, respectively. During normal operation, the bottom yellow section flashes yellow at all times. Upon preemption activation, the signal display changes from flashing yellow on the 8” head to a solid yellow on the middle head and then a solid red on the top head, and remains solid red until the preemption call is dropped. These pre-signals serve as a supplemental indication at those locations that serve a track clearance phase during preemption.

This type of pre-signals should be installed if railroad gates are not present and a track clearance phase is planned to operate within the preemption sequence.

Figure 9-2

Timed Overlap Operation
Pre-signal Placement

- Placing pre-signals on upstream side of rail/grade crossing, as close as possible to active warning devices.
 Place stop bar as far as feasible from the active warning device, between 15 and 40’.
- Placing the pre-signals on the railroad’s cantilever structure (must obtain permission from the railroad)
 If engineers determine that pre-signal heads are needed in advance of the railroad track(s), a physical connection
 (electric cable) is required between the pre-signal heads and the signal cabinet. Providing this physical connection
 will require either underground conduit bored under the track or an overhead connection on span over the
 track. Railroad companies do not typically allow overhead spans. Railroad companies may require their own
 contractors to perform boring under the tracks. Coordinating with the railroad to provide these services may be
 time consuming and delay the work.
- Placing the pre-signals on the downstream side of the rail/grade crossing either mounted separately or on
 the near side intersection signal span wire (When the train occupies the crossing, the visibility of these signal
 heads may become blocked by the train

Pre-signal Mounted Up Stream of Rail/Grade Crossing

RYG Pre-signal

RYY Pre-signal

Pre-signal Mounted on Railroad Cantilever
Maximum Signal Preemption Time (MSPT)
The Maximum Signal Preemption Time is the amount of time required to exit normal signal operation and enter Preemption Hold Interval. This time is limited as it begins when the train activates the railroad warning devices and should be well underway before the train arrives at the signal. This time is calculated by summing the Right of Way Transfer Time (RTT) and Queue Clearance Time (QCT).

Right of Way Transfer Time (RTT)
Is the maximum amount of time needed for the worst-case condition, prior to display of the clear track green interval or the preemption hold interval. This includes any pedestrian clearance, minimum green, yellow clearance, and red clearance interval for opposing traffic. Use maximum value of all phase combinations to determine MSPT.

Pedestrian Clearance - If pedestrian treatment is present or needed, certain measures must be implemented to ensure appropriate clearance is provided for both the pedestrian phase and the track clearance phase.

• If push buttons, only, are present, when preemption occurs, the controller may be programmed to immediately leave the current phase, serving only the yellow and red clearances.

• If pedestrian heads are existing or required, that cannot run simultaneous with the track clear approach, any pedestrian activation will have to be cleared prior to running the track clearance phase. The Walk phase may be immediately terminated, however a pedestrian clearance, a Flashing Don’t Walk indication, must be served. This pedestrian clearance (flashing don’t walk) time may be reduced upon preemption. To calculate this value divide the crossing distance by 5 feet/sec.. and subtract out the normal operation yellow and red clearances; If the Total Railroad Warning Time (TRWT) is severely limited the reduced clearance time may be shortened to run concurrently with the normal operation yellow and red time.

Minimum Green - Use only if engineering study indicates it is vital to safety of intersection and if adequate Railroad Warning Time is available.

Yellow Clearance - This is the normal operation yellow time for the phase that is operational when preemption occurs; do not reduce.

Red Clearance - This is the normal operation red time for the phase that is operational when preemption occurs; do not reduce.

Queue Clearance Time (QCT)
Queue Clearance Time is the “track clearance” time equal to the track approach green, yellow and red (optional), calculated by summing the Track Approach Green Time, the Yellow Clearance and the Red Clearance:

Track Approach Green Time - There are two ways of calculating the track approach green time:

• If Clear Storage Distance < Design Vehicle Length, the storage length to be cleared would be equal to Track Clear Distance + Clear Storage Distance. This will allow the design vehicle stopped within the TCD to clear the TCD area.

• If Clear Storage Distance > Design Vehicle Length, the storage length to be cleared would be equal to the Track Clearance Distance

Use Greenshields formula shown below &/or field observations to determine the track approach green time.

\[
Track \ Approach \ + \ Green \ Time = 4 + 2N \\
N = Number \ Of \ Vehicles \ Queued \ In \ Area \\
4 = Startup \ Time \\
2 = Headway \ Factor
\]

Field observations should include observing and measuring queue clearance times during peak traffic times and off peak times, noting operational characteristics of vehicles crossing and moving through the Clear Storage Distance & Track Clear Distance.

Yellow Clearance - This is the normal operation yellow time for the Queue Clearance phase; do not reduce.

Red Clearance - This is the normal operation red time for the Queue Clearance phase; do not reduce.
Figure 9-3
Calculation for Maximum Signal Preemption Time

Total Railroad Warning Time (TRWT)
Typically railroad companies provide a minimum of 20 seconds Railroad Warning Time (RWT) between activation of the railroad warning devices to the presence of the train in the crossing. Additional time may be available due to the type of warning device, width of crossing and speed of train. Unless the railroad company specifically indicates additional time is provided, SCDOT should plan on 20 seconds as the target time to have the track cleared. The Railroad Companies are required to provide a minimum of 20 seconds of warning time at locations where train speeds are 20 mph or higher. Railroad companies calculate TRWT in accordance with AREMA Signal Manual part 3.3.10. The Total Railroad Warning Time should be obtained from the railroad company.

Separation Time (ST)
The component of maximum preemption time during which the TCD is clear of vehicular traffic prior to the arrival of the train. This value can be calculated by subtracting the MSPT from the TRWT. A value of 2 seconds minimum is desirable but is not always possible.

Figure 9-4
Calculation for Separation Time
Simultaneous vs. Advance Preemption

Simultaneous Preemption is the simultaneous notification of an approaching train to the highway traffic controller unit and railroad active devices.

Advance Preemption is prior notification of an approaching train to the highway traffic controller unit by railroad in advance of railroad active-warning device activation.

If Total Railroad Warning Time is greater than or equal to Maximum Signal Preemption Time:

- Use Simultaneous Preemption, meaning the notification of an approaching train is forwarded to the highway traffic controller unit and railroad active devices at the same time. If needed, re-review signal operation to ensure operation is as desired.

If Total Railroad Warning Time is less than Maximum Signal Preemption Time:

- Re-review signal operation and make adjustments to the “Maximum Signal Preemption Time” within engineering judgment.
- If MSPT cannot be reduced, conduct engineering study to determine how much additional time is needed and coordinate with railroad company to determine if advanced preemption is appropriate.

Preemption Hold Interval

Engineers should consider traffic volumes, number and types of travel lanes, signal phasing and sight distance when deciding the type of Preemption Hold Interval. The two types are Limited Service operation and Flashing operation.

Limited Service allows certain phases, that do not conflict or direct traffic to the at-grade crossing, to operate a normal green, yellow, red sequence. These are typically feasible with multiple lane approaches where the mainline traffic runs parallel to the railroad track. Limited service allows the operation of turn phases as well as through phases, as long as traffic is not directed to the track area.

Flashing best suits those areas that have one-lane approaches, where traffic volumes are either low on the side streets, or equal between mainline and side street. It is also used where the at-grade crossing crosses the mainline roadway. Flashing operation typically flashes red to the road perpendicular to the railroad track and yellow on the parallel roadway, however an all way red flash can also be used, as appropriate.

Exiting Preemption Hold Interval

(re-entering normal operation)

Exiting Limited Service - Upon exiting limited service operation, the signal shall resume normal operation by remaining in the current phase being served until the phase would normally time out and then serve the next phase shown in the phasing diagram on the traffic signal plan.

Exiting Flashing Operation - Exiting flashing operation should comply with MUTCD Section 4D.31.

- Exiting Red-Red Flash - Is when the intersection functions as a All-Way Stop controlled intersection. When transitioning to steady mode, the intersection is first brought into a six second All-Way steady red configuration. After the six second steady red clearance interval has been provided, the first movements to be shown a green indication will be the through movements on the major street.
- Exiting Yellow-Red Flash - When transitioning to a steady mode, the signals facing the major-street traffic. Go directly from flashing yellow to steady green, and the signals facing the minor street traffic go directly from flashing red to steady red.

Consideration should be given to service the minor street at the earliest opportunity when the minor street crossed the track and there is significant queuing. The green time for the major street may be minimized to serve the minor street, as soon as possible upon resuming normal operation.
Figure 9-5
Example Preemption Sequence Chart
Preemption Hold Interval - Yellow/Red Flash

Figure 9-6
Example Preemption Sequence Chart
Preemption Hold Interval - All Way Red Flash

Figure 9-7
Example Preemption Sequence Chart
Preemption Hold Interval - Limited Service
Railroad Preemption Sequence Chart
The Railroad Preemption Sequence Chart is not required on the signal plan, however it is a good design tool to ensure the preemption operation is appropriate. It can also assist during reviews to check preemption in the field. The signal plan should have the following information:

RAILROAD PREEMPTION OPERATION:
TRACK CLEARANCE PHASE __ = __ SECONDS
PREEMPTION HOLD INTERVAL: ___________________________
(Limited Service for Phases _______ or Yellow Flash Phase __ Red Flash Phase _ or All Way Red Flash)

Connection between Railroad Cabana and Traffic Signal Cabinet
A physical electric cable connection is required between signal cabinet and railroad cabana. The cable connection is provided in a common splice box placed near the railroad cabana.

Vehicle Detection in Advance of Railroad Crossing
If engineers determine that vehicle detection is needed in advance of the railroad track(s), several options may be considered:

• inductive loops - this will require a physical connection (home run cable) between the detection loop and the signal cabinet. Providing this physical connection will require either underground conduit bored under the track or an overhead connection on span over the track. Railroad companies do not typically allow overhead spans. Railroad companies may require their own contractors to perform boring under the tracks. Coordinating with the railroad to provide these services may be time consuming and delay the work.

• Video Detection or Wireless Detection equipment can typically be installed on the same side of the track as the signal cabinet, eliminating the need to cross the track (under or over) with a physical connection. These alternatives to inductive loops may reduce the amount of time and coordination with the railroad company, making these tools a more viable option.
Battery Back Up System
Active railroad devices, such as railroad flashers and gate assemblies, have battery back ups in place. When traffic signals interconnected with railroads are upgraded, a battery backup system is installed.

Blank out Signs
The MUTCD requires blank out signs or phase restrictions across the track during pre-emption. The SCDOT uses 24” No Right Turn or No Left Turn Blank out signs.

Signs and Markings pertinent to Railroad Preemption
At preempted locations we typically use the “Do Not Stop on Track” sign and the “Turn Restriction” blank out signs. Other signs that may be appropriate are the “Stop Here on Red”, “Oncoming Traffic May Have Extended Green”, signs or the “No Turn on Red” signs. We recommend the use of these signs as appropriate based on an engineering study.

For more information on railroad signs refer to the Manual on Uniform Traffic Control Devices Chapter 8.